簡易檢索 / 詳目顯示

研究生: 黃祥庭
Huang, Siang-Ting
論文名稱: 利用動態粒子群演算法於三動力源複合動力系統之最佳能量管理
Dynamic particle swarm algorithm for optimal energy management for three power source of the hybrid system.
指導教授: 洪翊軒
Hung, Yi-Hsuan
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 56
中文關鍵詞: 動態粒子群算法規則庫管理最小等效油耗策略混合動力
英文關鍵詞: Dynamic Particle Swarm Optimization, rule base, Equivalent Consumption Minimization Strategy, Hybrid power
DOI URL: https://doi.org/10.6345/NTNU202204366
論文種類: 學術論文
相關次數: 點閱:226下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用動態粒子群演算法(Dynamic Particle Swarm Optimization, DPSO),用於三動力源複合動力車的能量管理系統。該車輛模型建製七個主要部分:內燃引擎、驅動馬達、起動發電機、鋰電池、能量管理系統、駕駛模式和變速箱。在能量管理系統,DPSO有五個演算步驟:(1)初始化、(2)確定適應度函數、(3)更新學習因子與慣性權重、(4)位置和速度更新、(5)輸出雙動力分配比。適應度函數粒子考慮運算效率,本研究設定四個。適應度函數於本研究為引擎、馬達、發電機之等效油耗,及懲罰值限制動力源之操作點於物理限制範圍內。可建製出三輸入輪胎轉速、電池電量、需求功率與雙輸出引擎與馬達動力分配比之DPSO能量管理系統並與整車模型作聯結。為了解本即時模擬之效益,本文與三種控制管理策略進行比較:(1)規則庫管理(Rule base):有五種控制模式(系統就緒、充電模式、電動模式、複合動力模式及煞車回充模式),根據內燃引擎的效率和馬達定轉速下找出最大扭矩;(2)最小等效油耗策略(ECMS):搭配全域搜尋(GSA)將所有的可能解都尋找,找出最小油耗時之動力源扭矩;(3)粒子群演算法(PSO):與DPSO相似,但DPSO會依據不同的型車狀態去改變學習值及慣性權重。模擬結果發現,在NEDC行車形態下, DPSO的效率比傳統的PSO改善率高0.09%,DPSO與規則庫控制相比,在等效油耗部分改善35.36%,而能量消耗改善為44.08%次於ECMS的最佳解 (改善37.3%等效油耗與46.95%能耗)。未來將本研究實際應用於三動力車輛並於動力計上測試實際能耗效果。

    This study used dynamic particle swarm optimization (DPSO) to manage the energy system of engine/motor/generator hybrid electric vehicles. The vehicle featured seven major segments, including an internal combustion engine, a motor, a starter generator, a battery, an energy management system, a driver model and a gearbox. To manage the power distribution of triple power sources, the DPSO was equipped with five steps: (1) initialization; (2) tenacity of the fitness functions; (3) update on the learning factor and inertia weight; (4) modification of position and velocity; and (5) output of dual power distribution ratio. Considering the efficiency of fitness functions particle calculation, four fitness functions were included. They were the gasoline equivalent of engine, motor, generator, and the operating point of penalty value for limiting power sources under reasonable physical limitation. With these functions, we can build triple input (rotation speed of tire, power of battery and requiring power) and dual output (distribution ratio of engine and motor) from the energy management system of DPSO which can also connect the vehicle model. In order to figure out the efficiency of real time simulation, this study was compared with three different controlling management strategies: (1) rule base: Including five controlling modes (system standby, charging mode, electrical mode, hybrid power mode and regenerative breaking mode). According to efficiency of engine and the rotation speed of motor to find out the highest torque; (2) Equivalent Consumption Minimization Strategy (ECMS): figure out the power sources torque under minimal consumption with global searching algorithms (GSA); (3) Particle Swarm Optimization (PSO): which is similar to DPSO, but DPSO will change learning value and inertia weight according to different driving cycle. The results show that the efficiency of DPSO was 0.09% higher than traditional PSO under NEDC driving cycle. Comparing DPSO and rule base, the equivalent consumption was improved by 35.36%, and energy consumption
    was also improved 44.08%, which was better than the best solution of ECMS
    (improved 37.3% of equivalent consumption and 46.95% of energy consumption).
    The energy consumption in this study would be applied and tested on the triple power
    vehicle and dynamometer in the future.

    摘 要 i ABSTRACT ii 目 次 iv 表 次 vi 圖 次 vii 第一章 緒論 1 1.1引言 1 1.2研究動機 2 1.3研究目的 3 1.4研究方法 4 1.5文獻回顧 6 1.6論文架構 9 第二章 系統架構與動態模型 11 2.1系統架構 11 2.1.1系統架構圖 12 2.2駕駛者行車型態 13 2.3傳動系統 14 2.4縱向整車動態 15 2.5內燃引擎 16 2.3高功率電動馬達 17 2.4 一體式起動式發電機 18 2.5儲能鋰電池 20 第三章 能量管理策略 23 3.1複合動力車模式介紹 23 3.2規則庫管理策略 25 3.3最小等效油耗法能量管理策略 29 3.3使用粒子群演算法控制能量管理策略 32 3.3.1動力分配比 32 3.3.2粒子群演算法 32 3.3.3動態慣性權重 34 3.3.4動態學習因子 34 3.3.5動態力子群演算法各項參數 35 3.3.6動態力子群演算法流程 36 3.3.7動態力子群演算法流程介紹 36 第四章 模擬結果與討論 39 4.1基本性能結果 39 4.2行車型態模擬結果 40 4.3動力最佳化分配結果 40 4.5不同能量管理比較結果 42 4.6能耗比較結果 45 第五章 結論與未來工作 47 5.1結論 47 5.2未來工作與建議 48 參考文獻 49 符號列表 54

    [1] US Environmental Protection Agency, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2014. USA, 2016.
    [2] Kamil Çağatay Bayindir, Mehmet Ali Gözüküçük, Ahmet Teke, “A comprehensive overview of hybrid electric vehicle: Powertrain configurations, powertrain control techniques and electronic control units,” Energy Conversion and Management., vol . 52, pp. 1305-1313, 2011.
    [3] 董又銘,“三動力源複合式動力車模擬與性能分析”,中華民國第十九屆車輛工程學術研討會,桃園創新技術學院機械工程系,中壢市,2014。
    [4] Ayfer Veziroglu,and Rosario Macario, “Fuel cell vehicles: state of the art with economic and environmental concerns,” International Journal of Hydrogen Energy., vol. 36, pp. 25-43, 2011.
    [5] 鄭勝文,“電動車輛專輯”,機械月刊,第25卷第8期, 1999。
    [6] 機械月刊編輯部,“電動車技術之現況與未來”,機械月刊,第25卷第8期, 1999。
    [7] 解潘祥,“複合電動車輛動力系統介紹”,機械工業雜誌,第224卷, 2001。
    [8] João P. Ribau, Carla M. Silva, João M.C. Sousa, “Efficiency, cost and life cycle CO 2 optimization of fuel cell hybrid and plug-in hybrid urban buses,” Applied Energy., vol. 129, pp. 320-335, 2014.
    [9] 經濟部能源局。取自http://www.tier.org.tw/energymonthly/
    [10] Cheng-Ta Chung, Yi-Hsuan Hung, “Energy improvement and performance evaluation of a novel full hybrid electric motorcycle with power split e-CVT,” Energy Conversion and Management., vol. 86, pp. 216-225, 2014.
    [11] Kuen-Bao Sheu, “Analysis and evaluation of hybrid scooter transmission systems,” Applied Energy., vol. 84, pp. 1289-1304, 2007.
    [12] Kuen-Bao Sheu, “Conceptual design of hybrid scooter transmissions with planetary gear-trains,” Applied Energy., vol. 84, pp. 526-541, 2007.
    [13] Kuen-Bao Sheu, Tsung-Hua Hsu, “Design and implementation of a novel hybrid-electric-motorcycle transmission,” Applied Energy., vol. 83, pp. 959-974, 2006.
    [14] Kuen-Bao Sheu, “Simulation for the analysis of a hybrid electric scooter powertrain,” Applied Energy., vol. 85, pp. 589-606, 2008.
    [15] J.L. Torres, R. Gonzalez, A. Gimenez, J. Lopez, “Energy management strategy for plug-in hybrid electric vehicles: a comparative study,” Appl Energy, vol. 113, pp. 816-824, 2014.
    [16] Niels J Schouten, Mutasim A Salman, Naim A Kheir, “Energy management strategies for parallel hybrid vehicles using fuzzy logic,” Control Eng Pract., vol. 11, pp. 171-177, 2003.
    [17] Bo-Chiuan Chen, Yuh-Yih Wu, Hsien-Chi Tsai, “Design and analysis of power management strategy for range extended electric vehicle using dynamic programming,” Appl Energy., vol. 113, pp. 1764-1774, 2014.
    [18] Zou Yuan, Liu Teng, Sun Fengchun, Huei Peng, “Comparative study of dynamic programming and Pontryagin’s minimum principle on energy management for a parallel hybrid electric vehicle,” Energy., vol. 6, no. 4, pp. 2305-2318, 2013.
    [19] Morteza Montazeri-Gh, Amir Poursamad, Babak Ghalichi, “Application of genetic algorithm for optimization of control strategy in parallel hybrid electric vehicles,” J Franklin Inst., vol. 343, pp. 420-135, 2006.
    [20] Liu J, Peng H, “Modeling and control of a power-split hybrid vehicle,” IEEE Trans Control Syst Tech., vol. 16, pp. 1242-1251, 2008.
    [21] Paganelli G, Guezennec Y, Rizzoni G, “Optimizing control strategy for hybrid fuel cell vehicle,” SAE Paper., No. 2002-01-0102, 2002.
    [22] Cong Hou, Minggao Ouyang, Liangfei Xu, Hewu Wang, “Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles,” Appl Energy., vol. 115, pp. 174-189, 2014.
    [23] Kennedy J, “Eberhart R"Particle swarm optimization,” Proc IEEE Int Neural Netw Conf., Perth, WA, Australia, Dec. 1995, pp. 1942-1958.
    [24] Clerc M, Kennedy J, “The particle swarm-explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans Evol Comput., vol. 6, pp. 58-73, 2002.
    [25]MathWorks, from https://www.mathworks.com/matlabcentral/
    fileexchange/35801-evolution-strategies--es-, 2012.
    [26] Oliveira JB, Boaventura-Cunha J, Moura Oliveira PB, Freire H, “A swarm intelligence-based tuning method for the sliding mode generalized predictive contro”, ISA Trans., vol. 53, pp. 1501-1515, 2014.
    [27] Alfi A, Modares H, “System identification and control using adaptive particle swarm optimization,” Appl Math Model., vol. 35, pp. 1210-1221, 2011.
    [28] Lin FJ, Chen SY, Teng LT, Chu H , “Recurrent functional-link-based fuzzy neural network controller with improved particle swarm optimization for a linear synchronous motor drive,” IEEE Trans Magn., vol. 45, pp. 3151-3165, 2009.
    [29] Guo S, Dang C, Liao X, “Joint opportunistic power and rate allocation for wireless ad hoc networks: an adaptive particle swarm optimization approach,” J Netw Comput Appl., vol. 34, pp. 1353-1365, 2011.
    [30] Hong YY, Lin FJ, Chen SY, Lin YC, Hsu FY, “A novel adaptive elite-based particle swarm optimization applied to VAR optimization in electric power systems,” Math Probl Eng., vol. 2014, pp. 14, 2014.
    [31] Wang Y, Li B, Weise T, Wang J, Yuan B, Tian Q , “Self-adaptive learning based particle swarm optimization,” Inf Sci, vol. 181, pp. 4515-4538, 2011.
    [32] Shi Y, Liu H, Gao L, Zhang G, “Cellular particle swarm optimization,” Inf Sci, vol. 181, pp. 4560-4593, 2011.
    [33] Selvakumar AI, Thanushkodi K, “ A new particle swarm optimization solution to nonconvex economic dispatch problems,” IEEE Trans Power Syst, vol. 22, pp. 42-51, 2011.
    [34] Wu X, Cao B, Wen J, Bian Y, “Particle swarm optimization for plug-in hybrid electric vehicle control strategy parameter,” IEEE vehicle power and propulsion conference, Harbin, China, Sept. 2008, pp. 3-5.
    [35] Lin X, Banvait H, Anwar S, Chen Y , “Optimal energy management for a plug-in hybrid electric vehicle: real-time controller,” In: 2010 American control conference, Baltimore, MD, USA, June, 2010, pp. 5037-5042.
    [36] Wu J, Zhang CH, Cui NX, “PSO algorithm-based parameter optimization for HEV and its control strategy,” Int J Automot Tech, vol. 9, pp. 53-69, 2008.
    [37]Hegazy O, Mierlo JV, “Particle swarm optimization for optimal powertrain component sizing and design of fuel cell hybrid electric vehicle,” In: IEEE 12thinternational conference on optimization of electrical and electronic equipment., USA, May. 2010, pp. 601-609.
    [38]董又銘,“三動力源複合式動力車之最佳化能量管理與模式切換”,國立臺灣師範大學,碩士論文,2015。
    [39] Haiyang Li, Hongzhou He, Yongge Wen, “Dynamic particle swarm optimization and K-means clusteringalgorithm for image segmentation,” Optik, vol. 126, pp. 4817-4822, 2015.
    [40] Syuan-Yi Chen, Yi-Hsuan Hung, Chien-Hsun Wu, Siang-Ting Huang, “Optimal energy management of a hybrid electric powertrain system using improved particle swarm optimization,” Applied Energy, vol. 160, pp. 132-145, 2015.

    無法下載圖示 本全文未授權公開
    QR CODE