簡易檢索 / 詳目顯示

研究生: 韋怡安
Wei, Yi-An
論文名稱: 利用磁流體之兆赫相位調製器
Magnetically Tunable Terahertz Phase Modulator Based on the Ferrofluid
指導教授: 楊承山
Yang, Chan-Shan
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 50
中文關鍵詞: 飛秒雷射磁流體ZnTe配置之兆赫波時域光譜系統兆赫波之磁光調製器
英文關鍵詞: Femtosecond laser, Ferrofluid, ZnTe-configured Terahertz time-domain spectroscopy, Terahertz Magneto-Optical modulator
DOI URL: http://doi.org/10.6345/NTNU202001153
論文種類: 學術論文
相關次數: 點閱:271下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 兆赫波波段目前還鮮少使用磁光效應的調製器,而調製器對於現在研究技術是一項不可或缺的重要工具,如6G通訊、成像,元素分析……等等,為了發展諸如此類的應用開始研發出相關的元件設備。而磁流體將會是我們研究的主要材料。因磁流體有著一個非常特別的超順磁特性,可以達到精準地被控制,非常適合作為調製器的材料。但由於兆赫波對於水有強烈的吸收,所以本論文中我們選擇的材料主要是以親油性磁流體為主,將利用奈米粒子皆為四氧化三鐵的不同磁流體放置在不同磁力的平行磁場下,觀察磁流體的折射率變化對兆赫波調製的結果。
    首先我們先將不同種的磁流體置入兆赫波時域光譜系統,取得其光學特性,包含折射率、穿透率、吸收係數…等,證實了親油性磁流體在兆赫波波段下的優良穿透效果。再藉由磁光效應中的Voigt effect作為基本架構施加不同大小的磁場(178mT、120mT、61mT、20.6mT、9.7mT、4.8mT)改變磁流體的折射率,進而可以調變兆赫波訊號,達到相位的調變效果。實驗中,我們是使用波段為800nm的超快脈衝雷射,利用非線性晶體ZnTe產生兆赫波訊號,施加在樣品上後,分析訊號的色散與振幅變化,推得相關參數。
    分析結果顯示,載液為正己烷及煤油的磁流體,因油本身對兆赫波吸收就非常小,所以親油性磁流體吸收也是極微小的。而在施以外加磁場時,除了折射率有著相關規律的變化外,也發現了以煤油為載夜的磁流體發生了一個非常特殊且有趣的現象,就是當磁場施加到約178mT時,在0.5THz處開始有一個極大的吸收峰值,此現象對於未來要研究兆赫波調製器是一項非常優越的表現。預期可行的應用有兆赫波吸收器、兆赫波偏振器及振幅調製器等等。

    There are little modulators based on magneto-optic effect used in the THz region. A modulator is essential to many research fields like 6G communication, image, elements analysis and so on. To develop such researches, the study of modulator is important. In this work, to create a modulator, it is suitable for us to use ferrofluid that feature the superparamagnetic properties, which can be controlled by magnetic field accurately. And we choose the lipophilic ferrofluid rather than the hydrophilic ferrofluid, because water performs strong absorption to the energy in terahertz region. We applied different amplitude of magnetic field to different kinds of ferrofluids based on Fe3O4 nanoparticles, and observed the change of the refractive indices of the ferrofluids after modulating by terahertz electric field.
    First, we measured the optical properties of the ferrofluids, including refractive index, transmittance, absorption under the terahertz time-domain spectroscopy (THz-TDS). The results show the great transmittance of the ferrofluid carried by oleic acid in the terahertz region. Then we applied different amplitude of the magnetic field(178mT、120mT、61mT、20.6mT、9.7mT、4.8mT) to change the refractive index of each ferrofluid. The changed refractive index caused a shift to the phase. Here in the system, we pump a 800nm ultrafast pulse laser into ZnTe crystal and generate THz wave transmits through the sample. After analyzing the measured dispersion and changed amplitude of terahertz signal, we can get the related coefficients.
    The results shows that the ferrofluids in the carrier liquid of Hexane and kerosene perform a weak absorption because of the lipophilic surfactant. And after applying the different magnetic field, the refractive index changed regularly. We also observed a special phenomenon that resonance happened at 0.5 THz when we applied the magnetic field to 178mT at the ferrofluid in the carrier liquid of kerosene. The phenomenon will be a distinguishing feature to the development of amplitude modulator.

    致謝 I 中文摘要 II Abstract III 目錄 IV 圖目錄 V 表目錄 VII 第一章、 緒論 1 1.1 兆赫波 1 1.2 磁流體 2 1.2.1 超順磁性 4 1.2.2 磁光效應 4 1.3 磁流體之兆赫波段研究 7 1.4 本論文的組織 8 第二章、 實驗架設 9 2.1 磁流體製備 9 2.2 樣品台的設計 9 2.3 COMSOL模擬之磁鐵挑選 10 2.4 雷射系統(Legend Elite HE+ USP-5K-III) 12 2.5 基於ZnTe設置的兆赫波時域光譜(THz-TDS)架設 13 第三章、 理論模型和分析方法 15 3.1 兆赫波時域光譜系統(THz-TDS) 15 3.1.1 利用ZnTe產生的兆赫波訊號 15 3.1.2 ZnTe偵測兆赫波訊號 17 3.2 THz-TDS 取得材料的光學常數 23 3.2.1 厚樣品 23 3.2.2薄樣品 26 3.2.3取得折射率 27 3.3 產生磁光效應的原因 28 3.3.1 磁流體的磁致雙折射現象 28 3.3.2 有效介質近似理論(Effective Medium approximations) 30 第四章、 結果與討論 32 4.1 磁流體材料的光學特性分析 32 第五章、 結論 46 5.1 結論 46 5.2 未來研究 46 參考文獻 47

    [1]. Globus, T. R., et al. "THz-spectroscopy of biological molecules." Journal of biological physics 29.2-3 (2003): 89-100.
    [2]. K Ajito, and Yuko Ueno. IEEE Transactions on Terahertz Science and Technology 1.1 (2011): 293-300.
    [3]. WL Chan, et al., Reports on progress in physics 70.8 (2007): 1325.
    [4]. DH Auston, et al., Applied physics letters 45.3 (1984): 284-286.
    [5]. A Rice, et al., Applied physics letters 64.11 (1994): 1324-1326.
    [6]. XC Zhang, et al., Applied Physics Letters 56.11 (1990): 1011-1013.
    [7]. R Köhler, et al., Nature 417.6885 (2002): 156-159.
    [8]. Q Wu, et al., Applied Physics Letters 67.24 (1995): 3523-3525.
    [9]. DE Spence, et al., Optics letters 16.22 (1991): 1762-1764.
    [10]. H. Zhang, P. Guo, P. Chen, S. Chang and J. Yuan, "Liquid-crystal-filled photonic crystal for terahertz switch and filter", J. Opt. Soc. Am. B, vol. 26, no. 1, pp. 101-106, 2009.
    [11]. F. Fan, W.-H. Gu, X.-H. Wang and S.-J. Chang, "Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array", Appl. Phys. Lett., vol. 102, no. 12, pp. 121113, 2013.
    [12]. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, et al., "A perfect metamaterialpolarization rotator", Appl. Phys. Lett., vol. 103, no. 17, pp. 171107, 2013.
    [13]. J. Gu, et al., Nat. Commun., vol. 3, pp. 1151, 2012.
    [14]. TS Rappaport, et al. IEEE Access 7 (2019): 78729-78757.
    [15]. M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, et al., "Terahertz Faraday rotation in a magnetic liquid: High magneto-optical figure of merit and broadband operation in a ferrofluid", Applied Physics Letters, vol. 100, pp. 241107, 2012.
    [16]. D.Krueger et al, “Review of agglomeration in ferrofluids,” IEEE Transactions on Magnetics,16,No.2,pp.251-253, (1980).
    [17]. Alexiou, Ch, et al. "Magnetic drug targeting: biodistribution and dependency on magnetic field strength." Journal of Magnetism and Magnetic Materials 252 (2002): 363-366.
    [18]. Liao, Shu-Hsien, et al. "Spin-spin relaxation of protons in ferrofluids characterized with a high-Tc superconducting quantum interference device-detected magnetometer in microtesla fields." Applied Physics Letters 100.23 (2012): 232405.
    [19]. Chen, Ming-Jye, et al. "Characterizing longitudinal and transverse relaxation rates of ferrofluids in microtesla magnetic fields." Journal of Applied Physics 110.12 (2011): 123911.
    [20]. Liao, Shu-Hsien, et al. "Characterizing the field-dependent T1-relaxation and imaging of ferrofluids using high-Tc superconducting quantum interference device magnetometer in low magnetic fields." Journal of Applied Physics 112.12 (2012): 123908.
    [21]. Chen, Sai, et al. "Tunable optical and magneto-optical properties of ferrofluid in the terahertz regime." Optics express 22.6 (2014): 6313-6321.
    [22]. Bean, C. P., and undJ D. Livingston. "Superparamagnetism." Journal of Applied Physics 30.4 (1959): S120-S129.
    [23]. X. Liu,L. Xiong,X. Yu,S. He,B. ZhangandJ.-l. Shen“Magnetically controlled terahertz modulator based on Fe3O4 nanoparticle ferrofluids, ” Journal of Physics D: Applied Physics,51,NO.10,(2018)
    [24]. Schatz, P. N., and A. J. McCaffery. "The faraday effect." Quarterly Reviews, Chemical Society 23.4 (1969): 552-584.
    [25]. Shalaby, Mostafa, et al. "A magnetic non-reciprocal isolator for broadband terahertz operation." Nature communications 4.1 (2013): 1-7.
    [26]. Fan, Fei, et al. "Magnetic photonic crystals for terahertz tunable filter and multifunctional polarization controller." JOSA B 28.4 (2011): 697-702.
    [27]. Shalaby, Mostafa, et al. "Terahertz magnetic modulator based on magnetically clustered nanoparticles." Applied Physics Letters 105.15 (2014): 151108.
    [28]. Fan, Fei, et al. "Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens." Optics express 21.7 (2013): 8614-8621.
    [29]. Shuvaev, A., et al. "Room temperature electrically tunable terahertz Faraday effect." Applied Physics Letters 102.24 (2013): 241902.
    [30]. Mu, Qianyi, et al. "Tunable magneto-optical polarization device for terahertz waves based on InSb and its plasmonic structure." Photonics Research 7.3 (2019): 325-331.
    [31]. Pu, Shengli, et al. "Tunable magnetic fluid grating by applying a magnetic field." Applied Physics Letters 87.2 (2005): 021901.
    [32]. Philip, John, et al. "A tunable optical filter." Measurement Science and Technology 14.8 (2003): 1289
    [33]. Taketomi, Susamu, et al. "Field dependence of magnetic birefringence of magnetic fluid in low-magnetic-field region." Journal of the Physical Society of Japan 59.9 (1990): 3077-3080.
    [34]. Horng, Herng-Er, et al. "Magnetic field dependence of Cotton–Mouton rotation for magnetic fluid films." Journal of magnetism and magnetic materials 201.1-3 (1999): 215-217.
    [35]. Yusuf, Nihad A., Akram A. Rousan, and Hassan M. El‐Ghanem. "The wavelength dependence of Faraday rotation in magnetic fluids." Journal of applied physics 64.5 (1988): 2781-2782.
    [36]. Di, Ziyun, et al. "Magnetic-field-induced birefringence and particle agglomeration in magnetic fluids." Applied physics letters 89.21 (2006): 211106.
    [37]. Fan, Fei, Sai Chen, and Sheng-Jiang Chang. "A review of magneto-optical microstructure devices at terahertz frequencies." IEEE Journal of Selected Topics in Quantum Electronics (2016).
    [38]. Chen, Sai, et al. "Tunable optical and magneto-optical properties of ferrofluid in the terahertz regime." Optics express 22.6 (2014): 6313-6321.
    [39]. X. Liu,L. Xiong,X. Yu,S. He,B. ZhangandJ.-l. Shen“Magnetically controlled terahertz modulator based on Fe3O4 nanoparticle ferrofluids, ” Journal of Physics D: Applied Physics,51,NO.10,(2018)
    [40]. Ji, Yunyun, et al. "Manipulation enhancement of terahertz liquid crystal phase shifter magnetically induced by ferromagnetic nanoparticles." Nanoscale 11.11 (2019): 4933-4941.
    [41]. Busch, S. F., et al. "Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics." Journal of Infrared, Millimeter, and Terahertz Waves 35.12 (2014): 993-997.
    [42]. Brabec, Thomas, et al. "Kerr lens mode locking." Optics letters 17.18 (1992): 1292-1294.
    [43]. Strickland, Donna, and Gerard Mourou. "Compression of amplified chirped optical pulses." Optics communications 56.3 (1985): 219-221.
    [44]. Eckardt, Robert C., et al. "Optical parametric oscillator frequency tuning and control." JOSA B 8.3 (1991): 646-667.
    [45]. Lee, Yun-Shik. Principles of terahertz science and technology. Vol. 170. Springer Science & Business Media, 2009.
    [46]. Schatz, P. N., and A. J. McCaffery. "The faraday effect." Quarterly Reviews, Chemical Society 23.4 (1969): 552-584.
    [47]. Nahata, Ajay, Aniruddha S. Weling, and Tony F. Heinz. "A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling." Applied physics letters 69.16 (1996): 2321-2323.
    [48]. Zhang, X‐C., et al. "Influence of electric and magnetic fields on THz radiation." Applied physics letters 62.20 (1993): 2477-2479
    [49]. Lee, Yun-Shik. Principles of terahertz science and technology. Vol. 170. Springer Science & Business Media, 2009.
    [50]. Naftaly, Mira, and Richard Dudley. "Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers." Optics letters 34.8 (2009): 1213-1215.
    [51]. Li, Yuanpeng, et al. "Comparison Study of Gold Nanorod and Nanoparticle Monolayer Enhanced Optical Terahertz Modulators." IEEE Transactions on Terahertz Science and Technology 9.5 (2019): 484-490
    [52]. Han, Jiaguang, et al. "Optical and dielectric properties of ZnO tetrapod structures at terahertz frequencies." Applied physics letters 89.3 (2006): 031107.
    [53]. Han, Jiaguang, et al. "Terahertz dielectric properties and low-frequency phonon resonances of ZnO nanostructures." The Journal of Physical Chemistry C 111.35 (2007): 13000-13006.
    [54]. M Shalaby, et al. Applied Physics Letters 100.24 (2012): 241107.
    [55]. S Chen, et al. Optics express 22.6 (2014): 6313-6321.
    [56]. V Lucarini, et al. Kramers-Kronig relations in optical materials research. Vol. 110. Springer Science & Business Media, 2005

    無法下載圖示 本全文未授權公開
    QR CODE