簡易檢索 / 詳目顯示

研究生: 蔡聰暉
Tsai Tsong Hui
論文名稱: 由心智模式探討學生導引之類比教學對國二學生溫度與熱概念學習之研究
Use mental model to explore student-guided analogical teaching how to affect the concept heat and temperature
指導教授: 邱美虹
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 240
中文關鍵詞: 類比溫度與熱本體論認識論架構理論心智模式
英文關鍵詞: analogical teaching, analogy, mental model, ontology, heat and temperature, framework, analogical learning
論文種類: 學術論文
相關次數: 點閱:240下載:92
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本研究主要目的有三:第一、透過不同類比教材對於不同認知思考能力學生之溫度與熱概念學習的成效和態度的分析,來了解影響類比學習的因素;第二、了解學生對於溫度與熱概念具有的另有概念和心智模式;第三、在認識論之感覺經驗和本體論預設下,經過不同類比教學後,瞭解溫度與熱的概念改變類型。
    研究對象為國二學生,以現行國中理化二年級第五章溫度與熱為題材,分別從文獻中提及的水類比物-典型類比教材、和由已學過溫度與熱單元的國三學生的自發性類比物來設計類比教材和對照組三種教材,透過教學前測驗、類比教學、教學後測驗、問卷和晤談等方式進行研究。
    本研究結果如下:
    1. 本研究設計的典型類比組整體教學成效優於對照組,但是學生類比組卻較對照組的教學成效為差。形式思考能力學生可透過類比教學而有所助益,而對於過渡思考能力和具體思考能力學生則教學成效無明顯差異。進一步針對溫度與熱各概念的學習成效分析,顯示各類比教材所聚焦的概念會有所助益,但是類比教材的限制和學生的誤解亦會造成迷思概念,影響類比教學成效。
    2. 不同認知思考能力影響到學生類比對應的能力,但是類比的理解和遷移則會因類比教材內容的差異,產生不同程度的影響。
    3. 不同認知能力的學生對於不同類比物的類比態度並不一致,顯示不同認知思考能力學生對於類比教材的態度與類比教材有關,即使類比物容易被學生接受,但是並不保證類比遷移和學習的成功,顯示設計類比除考慮學生熟悉經驗和認知思考能力外尚存在其他影響的因素。
    4. 學生學習溫度與熱必須考慮認識論和本體論預設,在感覺經驗、教學脈絡內容兩者影響程度差異下,不同「溫度與熱」的本體概念屬性來形成各種心智模式。推論溫度與熱之間關係,應將「熱」視為「偏過程」概念屬性,而學生誤以「偏物質」概念屬性來解釋關係;應將「比熱」概念置於影響「熱量和溫度變化之間的過程」中,而錯置於「吸熱的過程」中;考慮熱平衡中物體的溫度變化,應視為「偏CBI」概念屬性,而學生誤認為「偏過程」屬性;學生無法了解「冷熱感覺」是發生於物體間的「偏過程」屬性,而誤認為物體中的「偏物質」屬性概念。
    綜上所述,學生認知思考能力的差異與類比教材的設計,影響到類比教學的成效外,並且進一步思考在認識論和本體論預設下,亦會影響到溫度與熱概念的學習。

    Abstract
    The research mainly serves three purposes: first, to understand the factors that influence analogical learning of concepts of heat and temperature analyzing by students with different cognitive thinking abilities in learning from these different analogical materials ; second, to understand students' alternative concepts and mental models on heat and temperature ; third, to make use of Vosniadou's framework theory and Chi's theory of ontological coceptual change to understand students' epistemological and ontological presuppositions of heat and temperature .
    Seventy eight 8 th graders are involved in this study. Three teaching materials:(1) standard analogical materials, i.e. water analogy mentioned in scientific literature, (2) student-directed analogical materials, i.e. self-generated analogies which are generally designed for the 9 th grader who have learned the concept of heat and temperature, and (3) the materials for the control group. This research is implemented through pretest, teaching, post-post, interviewing and deferring test.
    The results of the research are as follows.
    1. The whole teaching effect on the standard analogical group designed specifically for the research is superior to that on the control group, however, the teaching effect on the student-directed analogical group is worse than that on the control group. Formal operational students could benefit from analogy, but for transitional operational students and concrete operational students, teaching effects are of no significant differences. Further analysis on the learning effects on the concepts of heat and temperature reveals that the focused concept in each analogical material is beneficial, but analogical constraints and students' misunderstandings also lead to alternative concepts, which influences the effect on analogical instruction.
    2. Different cognitive thinking abilities affect students' abilities of analogical mapping. Nevertheless, analogical understanding and transfer generate influences of different degrees due to divergent analogical materials.
    3. Students of different cognitive abilities hold varied attitudes towards different analogies, which shows that different cognitive-thinking-ability students' attitudes towards analogical material are related to analogical materials. Even though analogy is easier for students to understand, it does not guarantee the success of analogy transfer and learning, which manifests that in designing analogy, other factors should be taken into consideration besides student's familiar experiences and cognitive thinking abilities.
    4. When students learn heat and temperature, teachers should take into account epistemological and ontological presuppositions. Under the different-degree influences between perceptual experience and teaching context, students use different ontological concept properties of heat and temperature to form all types of mental models. When inferring the relationship between heat and temperature, we should regard heat as process-oriented concept properties, however, students mistakenly use matter-oriented concept properties to account for relationship. We should put the concept of specific heat in 'the process of changes of heat and temperature', while students mistakenly put it in considering 'the process of absorption of heat.' We should consider the temperature change of the object in heat equilibrium and think of it as CBI-oriented concept properties, but students mistakenly think of it as process-oriented concept properties. Students can not understand that the feeling of being hot and cold occurs in process-oriented concept properties among objects; they mistakenly think it occurs in matter-oriented concept properties of objects.
    In summary, the analogical materials will be influenced not only by the diversities of students' cognitive thinking abilities and the design of analogical materials, but also by students' conceptual learning of heat and temperature under epistemological and ontological presuppositions.

    目 次 第一章 緒論…………………………………………..…...1 第一節 研究動機與研究背景…………………………. …………..1 第二節 研究目的與研究問題……………………………………... 2 第三節 名詞釋義……………………………………….……….…..4 第四節 研究範圍與限制……………………………………………5 第二章 文獻探討………………………………………… 6 第一節 類比…………………………………………………..…. …6 第二節 類比在科學教育的運用……………………………..……13 第三節 概念改變…………………………………………..………29 第四節 學生溫度與熱概念的相關研究…………………………..39 第三章 研究方法………………………………………...46 第一節 研究設計…………………………………………………..46 第二節 研究對象…………………………………………………..46 第三節 研究工具…………………………………………………..47 第四節 研究流程…………………………………………………..61 第五節 資料處理與分析………………………………………..…63 第四章 研究結果與討論………………………………...68 第一節 教學前學生另有概念之分析……………………………..68 第二節 類比教學成效之比較……………………………………..73 第三節 類比對各概念主題學習的成效分析………………….….77 第四節 學生溫度與熱的心智模式…………………………….….84 第五節 溫度與熱概念改變的模式………………………………115 第六節 類比學習態度的相關分析………………………..……..122 第七節 類比與概念學習………………………………….……...133 第五章 結論與建議…………………………………….145 第一節 結論………………………………………………….…...145 第二節 建議………………………………………………. ……..148 參考文獻 ………………………………………………...…152 附錄一 學生自發類比問卷………………………………………………...160 附錄二 典型類比組-熱量單元教材……………………………………...163 典型類比組-比熱單元教材………………………………….…..169 典型類比組-熱的傳播單元教材………………………………...175 學生類比組-熱量單元教材……………………………………...178 學生類比組-比熱單元教材……………………………………...184 典型類比組-熱的傳播單元教材………………………………...190 對照組-熱量單元教材……………………………..…………….193 對照組-比熱單元教材…………………………………………...196 對照組-熱的傳播單元教材……………………………………...200 附錄三 邏輯思考測驗 …………………………………………………….202 附錄四 溫度與熱概念理解評量測驗(前測、後測和延宕測驗) …………214 附錄五 典型類比組-類比學習態度問卷(一) …………………………...221 典型類比組-類比學習態度問卷(二) …………………………...223 學生類比組-類比學習態度問卷(一) …………………………...226 學生典型類比組-類比學習態度問卷(二) ……………………...229 表 次 表2-1.1 相似性的種類……………………………………………………...7 表2-2.1 GMAT類比教學模式…………………………………………….20 表2-2.2 類比教學與學習的FAR導引……………………………………21 表2-3.1 Thagard概念改變的層次………………………………………..37 表2-3.2 物件在因果關係上角色的改變………………………………….38 表3-2.1 研究樣本基本資料……………………………………………….46 表3-3.1 學生自發性類比種類…………………………………………….48 表3-3.2 水流類比-熱量單元的對應情形……………………………….49 表3-3.3 水流類比-比熱單元的對應情形……………………………….51 表3-3.4 水流類比-熱的傳播單元的對應情形………………………….52 表3-3.5 「搬木塊上樓梯」和「喝咖啡加糖」類比-熱量的對應情形…..53 表3-3.6 「搬木塊上樓梯」和「喝咖啡加糖」類比-比熱的對應情形…..54 表3-3.7 『喝咖啡太甜,兩杯混合』類比-熱的傳播單元的對應情形…...55 表3-3.8 溫度與熱概念理解測驗之雙向細目表………………………….59 表4-1-1 前測成績分析……………………………………………………68 表4-1.2 教學前學生的另有概念及分佈的百分比……………………….69 表4-2.1 教學後成績變數分析摘要表…………………………………….73 表4-2.2 教學後測成績之比較…………………………………………….73 表4-2.3 各組中不同思考能力學生的成就測驗分析…………………….74 表4-2.4 典型類比組內成就測驗事後比較……………………………….74 表4-2.5 學生類比組內成就測驗事後比較……………………………….74 表4-2.6 形式思考能力學生後測成績分析……………………………….75 表4-2.7 過渡思考能力學生後測成績分析……………………………….75 表4-2.8 具體思考能力學生後測成績分析……………………………….76 表4-3.1 熱平衡時的溫度變化和熱量的關係答題統計表……………….78 表4-3.2 熱的意義與多寡之答題統計表………………………………….79 表4-3.3 區別熱和溫度概念性質之答對率……………………………….80 表4-3.4 熱的傳播概念答對率…………………………………………….81 表4-3.5 比熱概念答題選項人數分佈表………………………………….83 表4-3.6 熱對物質影響概念答對率……………………………………….83 表4-4.1 水加熱系統的心智模式人數分佈表…….………………………90 表4-4.2 簡單比熱的心智模式人數分佈表……………………………… 98 表4-4.3 熱平衡下的溫度與熱的變化之心智模式人數分佈表………...106 表4-4.4 冷熱感覺之心智模式人數分佈表……………………………. .114 表4-6.1 典型類比組教材對應分數相關分析…………………………...122 表4-6.2 爬樓梯類比教材對應相關分析………………………………..123 表4-6.3 喝咖啡類比教材對應之相關分析……………………………..123 表4-6.4 學生類比組類比教材對應之相關分析………………………...124 表4-6.5 對應高、低分組的後測分數差異分析…………………………125 表4-6.6 典型類比組態度之相關分析…………………………………...126 表4-6.7 典型類比組類比態度對後測分數的差異分析………………...126 表4-6.8 不同認知思考能力學生的類比態度之差異分析……………...127 表4-6.9 爬樓梯類比教材類比態度與後測成績之相關分析…………...128 表4-6.10 爬樓梯類比教材之類比態度對後測分數之差異分析………...129 表4-6.11 喝咖啡類比教材類比態度與後測成績之相關分析………….. 129 表4-6.12 喝咖啡類比教材之類比態度對後測分數的差異分析………...129 圖 次 圖2-1.1 類比的抽象表徵…………………………………………………...6 圖2-1.2 各種相似性的分布圖……………………………………………...8 圖2-1.3 學生水流的知識表徵…………………………………………….10 圖2-1.4 學生熱流的知識表徵…………………………………………….11 圖2-2.1 類比建構理論模式……………………………………………….14 圖2-2.2a 從原理產生的類比機制………………………………………….15 圖2-2.2b 經由轉換而產生的類比機制…………………………………….15 圖2-2.2c 經由聯想而產生的類比機制…………………………………….15 圖2-3.1 Vosniadou(1994)的架構理論…………………………………..31 圖2-3.2 本體樹…………………………………………………………….33 圖2-3.3 根本概念改變與概念改變示意圖……………………………….34 圖2-3.4 典範改變、理論改變與概念改變示意圖……………………….36 圖2-3.5 概念改變的三元架構…………………………………………….38 圖2-4.1 孩童對熱的起始心智模式的概念架構………………………….43 圖2-4.2 孩童對熱的心智模式…………………………………………….44 圖2-4.3 熱與溫度的科學概念模式……………………………………….45 圖3-3.1 水流類比-熱量單元的類比圖………………………………….50 圖3-3.2 水流類比-比熱單元的類比圖………………………………….50 圖3-3.3 水流類比-熱的傳播單元的類比圖…………………………….51 圖3-3.4 「搬木塊上樓梯」類比-熱量單元的類比圖……………………52 圖3-3.5 「喝咖啡加糖」類比-熱量單元的類比圖……………………….52 圖3-3.6 「搬木塊上樓梯」類比-比熱單元的類比圖…………………….53 圖3-3.7 『喝咖啡太甜,兩杯混合』類比-熱的傳播單元的類比圖……55 圖3-3.8 FAR導引教學模式………………………………………………56 圖3-4.1 研究流程圖……………………………………………………….62 圖3-5.1 心智模式的分析架構…………………………………………….64 圖3-5.2 心智模式範例…………………………………………………….67 圖4-2.1 各組不同認知思考能力學生的後測成績比較………………….76 圖4-4.1 類型H-1 溫度與熱概念模糊的模式……………………………85 圖4-4.2 類型H-2 吸熱與溫度變化概念矛盾的模式……………………86 圖4-4.3 類型H-3 吸熱與溫度變化概念分離的模式……………………88 圖4-4.4 類型H-4科學概念的模式……………………………………….89 圖4-4.5 水加熱系統之學習概念架構…………………………………….89 圖4-4.6 類型S-1無關比熱的模式………………………………………..92 圖4-4.7 類型S-2忽略吸熱多寡,吸熱速率和溫度變化相關的模式……93 圖4-4.8 類型S-3比熱誤解模式………………………………………….95 圖4-4.9 類型S-4科學概念的模式………………………………………..96 圖4-4.10 簡單比熱系統之學習概念架構………………………………….97 圖4-4.11 SB-1未考慮熱平衡下,溫度與熱量模糊的心智模式…………100 圖4-4.12 SB-2未考慮熱平衡限制下之比熱影響吸、放熱的心智模式…101 圖4-4.13 SB-3考慮熱平衡限制下之溫度與熱模糊的模式……………..103 圖4-4.14 SB-4考慮熱平衡的科學概念心智模式………………………..105 圖4-4.15 複雜比熱系統之學習概念架構………………………………...106 圖4-4.16 F-1 物體吸冷(熱)與放冷(熱)的心智模式………………108 圖4-4.17 F-2吸熱、散熱的心智模式…………………………………….110 圖4-4.18 F-3物體升溫、降溫快慢不同的心智模式……………………...111 圖4-4.19 F-4科學概念的模式…………………………………………….113 圖4-4.20 冷熱感覺之學習概念架構……………………………………...114 圖4-5.1 典型類比組水對加熱系統的概念改變類型…………………...115 圖4-5.2 對照組對水加熱系統之概念改變類型………………………...117 圖4-5.3 比熱之概念改變的類型………………………………………...118 圖4-5.4 未衝擊本體預設和認識預設的之概念改變類型……………...119 圖4-5.5 衝擊本體預設和認識預設的之概念改變類型………………...120 圖4-6.1 典型類比組中不同認知思考能力學生之類比態度分析……...128 圖4-6.2 學生類比組之類比問卷態度分數比較………………………...132 圖4-7.1 類比物與目標物對應遺失和錯誤……………………………...142 圖4-7.2 類比物和目標物重疊示意圖…………………………………...143

    參考文獻
    一、中文部分
    邱美虹和翁雪琴(1995)。國三學生「四季成因」之心智模式與推論歷程
    之探討。科學教育學刊,3(1),23-68。
    邱美虹(2000)。概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
    林靜雯(2000)。由概念改變即心智模式初探多重類比對國小四年級學生
    電學概念學習之影響。國立台灣師範大學科學教育研究所碩士論文。(未出版)
    高淑芬與邱美虹(1998)。類比的檢索與對應。科學教育學刊,6(1),63-80。
    張瓊、于祺明和劉文君(1994)。類比與理論模型的建構。34-68。台北市:
    淑馨出版社。
    郭人仲(1994)。國中生物概念的類比學習之研究。國立彰化師範大學科
    學教育研究所碩士論文。(未出版)
    黃幸美(1995)。類比推理思考及其在教學上的應用。教育研究資訊,3(3),
    128-142。
    郭重吉與吳鐵雄(1990)。利用晤談方式探查國中學生對重要物理概念的
    另有架構之研究(II)。國科會專題研究,NSC-80-0111-S-017-08-D。
    黃寶鈿與黃湘武(民78)。學生之比熱及熱平衡概念發展的研究。中華民
    國第五屆科學教育學術研討會,209-232。
    郭奕玲與沈君慧(1996)。物理通史。新竹:凡異出版社。
    謝秀月(1990)。小學、師院學生熱與溫度概念的另有架構。國立彰化師
    範大學科學教育研究所碩士論文。(未出版)
    蕭碧如(1996)。圖形類比對國中生理論學習之影響。國立高雄師範大學
    科學教育研究所碩士論文。(未出版)
    鄭碧雲(民79)。國中資賦優異學生科學過程技能與其相關因素之研究。
    國立彰化師範大學科學教育研究所碩士論文。(未出版)
    二、英文部分
    Albert, E. (1978). Development of the concept of heat in children. Science Education, 62(3), 389-399.
    Arnold, M., & Millar, R. (1994). Children's and lay adult's views about thermal equilibrim. International Journal of Science Education. 16, 405-419.
    Arnold, M., & Millar, R. (1996). Learning the scientific "Story":a case study
    in the teaching and learning of elementary thermodynamics. Science Education. 80(3), 249-281.
    Brown, D., & Clement, J. (1989). Overcoming misconceptions via analogical
    reasoning:Abstract transfer versus explanatory model construction. Instructional Science, 18, 237-261.
    Brown, D. (1993). Refocusing core intuitions:A concretizing role for analogy
    in conceptual change. Journal of Research in Science Teaching., 30(10), 1273-1290.
    Carey, S. (1985). Conceptual change in childhood. The MIT press, Cambridge,
    Massachusetts.
    Clement, J. (1993). Using bridging analogies and anchoring intuition to deal
    with students' preconceptions in physics. Journal of Research in Science Teaching, 30(10), 1241-1257.
    Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Implications for learning and discovery in sciences. In R.Giere (Eds.), Cognitive models of science: Minnesota studies in the philosophy of science (pp.129-186). Minneapolis: University of Minnesota Press.
    Chi, M. T. H., Slotta, J. D.,& deLeeuw, N. (1994). From things to process:A
    theory of conceptual change for learning science concepts, Learning and Instruction, 4, 27-43.
    Chi, M. T. H. (1997). Creativity:Shifting across ontological categories
    flexibly. In T. B. Ward, S. M. Smith, & J. Vaid(Eds.),Creative Thought:
    An Investigation of Conceptual Structuers and Process, 209-234. Washington, DC:American Psychological Association.
    Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition.: A theoretical framework and implications for science instruction. Review of Education Research, 63(1), 1-49.
    Clement, J. (1988). Observed methods for generating analogies in scientific problem solving. Cognitive Science, 15, 89-132.
    Clough, E. E., & Driver, R. (1985). Secondary students' conceptions of the conduction of heat:Bringing together scientific and personal views. Physical Education, 20, 176-182.
    Dagher, Z. R. (1994). Does the analogies contribute to conceptual change. Science Education, 78(6), 601-614.
    Dagher, Z. R. (1995). Analysis of analogies used by science teachers. Journal of Research in Science Teaching, 32(2), 259-270.
    Dagher, Z. R.(1998). The case for analogies in teaching science for understanding. In J. J. Mintzer and J. H. Wandersee, (Eds.), Teaching Science for Understanding:A Human Constructivist View, 195-211. San Diego: Academic Press.
    De Kleer, J., & Brown, J.(1983). Assumptions and ambiguities in mechanistic mental models. In D. Gentner and A. Stevens(Eds.), Mental models(Lawrence Erlbaum Associates, Hillsdale, N. J.),155-190.
    diSessa, A. (1993). Towards an epistemology of physics. Cognition and Instruction, 10(2ſ), 105-225.
    Dietrich, E. (2000). Conceptual and Representational Change in Humans and Machines. In E. Dietrich & A. Markman(Eds.)Cognitive Dynamics. Mahwah, NJ: Lawrence Erlbaum Associates.
    Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education, 75(6), 649-672.
    Duit, R., & Glynn, S. (1996). Mental modeling. In G. Welford, J. Osborne and P. Scott(Eds.)Research in Science Education in Europe(London:The Falmer Press).
    Dunbar, K. (1997). How scientists think:On-line creativity and conceptual change in science. In T.B. Ward, S. M. Smith, & S. Vaid(Eds.)Conceptual structures and processes:Emergence, Discovery and Change. APA Press. Washington DC.
    Dykstra, D. I., Boyle, C. R., & Monarch, I. A. (1992). Studying conceptual change in learning physics. Science Education, 76(6), 615-652.
    Erickson, G. L. (1979). Children's conceptions of heat and temperature. Science Education, 63, 221-230.
    Erickson, G. L. (1979). Children's conceptions of heat and temperature. Science Education, 63(2), 221-230.
    Erickson, G. L. (1980). Children's viewpoints of heat:A second look. Science Education, 64(3), 323-336.
    Erickson, G. L. (1985). Heat and temperature:Part A:A overview of pupils ideas. In S. Driver, E.Guesne and A. Tiberghien Children's Ideas in Science. Milton Keynes Open University Press.
    Falkenhainer, B., Forbus, K. D., & Gentner, D. (1989). The structure-mapping engine:Algorithm and example. Artificial Intelligence, 41, 1-63.
    Flick, L. (1991). Where concepts meet percepts:Stimulating analogical thought in children. Science Education, 75(2), 2155-230.
    Forbus, K. D., Gentner, D., & Law, K. (1994). MAC/FAC:A model of similarity-based retrieval. Cognitive Science, 19, 141-205.
    Gabel, D. L., & Sherwood, R. D. (1980). Effect of using analogies on chemistry achievement according to Piagetian level. Science Education, 64(5), 709-716.
    Gentner, D. (1983). Structure-Mapping:A theoretical framework for analogy. Cognition Science, 7, 155-170.
    Gentner, D., & Gentner, D. R. (1983). Flowing water or teeming crowds:Mental models of electricity. In D. Gentner and A. Stevens(eds)Mental Models.(Lawrence Erlbaum Associates, Hillsdale, N.J.)99-130.
    Gentner, D. (1988). Metaphor as structure-mapping:The relational shift. Child Development, 59, 47-59.
    Gentner, D. (1989). The mechanisms of analogical learning. In S. Vosniadou & A. Ortony(Eds.), Similarity and analogical reasoning. London:Cambridge University Press.
    Gentner, D., Brem, S., Ferguson, R. W.,Markman, A. B., Levidow, B. B., Wolff, P., & Forbus, K. D. (1997). Analogical reasoning and conceptual change: A case study of Johannes Kepler. The Journal of the Learning Science, 6(1), 3-40.
    Gick, M. L., & Holyoak, K. L. (1983). Scheme induction and analogical transfer. Cognitive psychology, 15, 1-38.
    Glynn, S. M., Britton, B. K., Semrud-Clikeman, M.,& Muth, K. D. (1989). Analogical reasoning and problem solving in the textbook. In J. A. Glocer, R. R. Ronning, &C. R. Reynolds(Eds.), Handbook of Creativity:Assessment, Theroy, and Research, 383-389. New York:Plenum.
    Glynn, S. M. (1991). Explaining science concept:A teaching-with-analogies
    model. In S. Glynn, R. Yeany, & B. Britton(Eds.), The Psychology of Learning Science , 219-240.Hillsdale, NJ:Lawrence Erlbaum.
    Glynn, S. M.,&Takahashi, T.(1998).Learning from analogy-enhanced science text. Journal Research of Science Teaching, 35(10), 1129-1149.
    Goodstein, M., & Howe, A. C.(1978). The use of concrete models in secondary chemistry instruction. Journal Research of Science Teaching, 15(5), 361-366.
    Greca, I., & Moreira, M. (2000). Mental models, conceptual models, and modeling. International Journal of Science Education, 22(1), 1-11.
    Harrison A. G. & Treagust, D. F. (1993). Teaching with analogy:A case study in grade-10 optics. Journal of Research in Science Teaching , 30(10), 1291-1307.
    Harrison, A. G. (1993). Evaluation of a model for teaching analogies in secondary science. Unpublished master's thesis, Curtin University of Techology, Perth, Western Australia.
    Harrison A. G., & Treagust, D. F. (1994). Science analogies. The Scienc Teacher, 61(4), 40-43.
    Hewson, M. G. A'B. (1984). The influence of intellectual environment on conceptions of heat. Europen Journal Science Education, 6(3), 245-262.
    Hollon, R. E., & Anderson, C. W. (1986). Heat and temperature:A teaching module. Occasional paper No:93. Eric Document No:ED 273453.
    Holyoak, K. J., & Kon, K. (1987). Surface and structural similarity in analogical transfer. Memory & Cognition, 15(4), 332-340.
    Holyoak, K., & Thagard, P. (1989). Analogical mapping by constrain satifaction. Cognitive Science, 13, 295-355.
    Holyoak, K., & Thagard, P. (1990). A constraint-satifaction approach to analogue retrieval and mapping. In K. J. Gilhooly, M. T. Keane, R. Logie, & G. Erdos(Eds.), Lines of Thinking:Reflections on the Psychology of Thought(Vol. 1). New York:Wiley.
    Holyoak, K., & Thagard, P. (1995). The analogical child. Mental Leap:Analogy in Creative Thought, London:MIT.
    Johnson-Laird, P. N. (1983). Mental Models.(Cambridge:Harvard University Press).
    Johnstone, A. H., & Al-Naeme, F. F. (1991). Room for scientific thought. Imternational Journal of Science Education, 13, 187-192.
    Keane, M. T. (1990). Incremental analogizing:Theory and model. In K. J. Gilhooly, M. T. Keane, R. Logie, & G. Erdos(Eds.), Lines of Thinking:Reflections on the Psychology of Thought(Vol. 1). New York:Wiley.
    Keane, M. T., Ledgeway, T., & Duff, S. (1994). Constraints on analogical mapping:A comparison of three models. Cognitive Science. 18, 387-438.
    Kesidou, S., & Duit, R. (1993). Students' conceptions of the second law of thermodynamics-An interpretive study. Journal of Research in Science Teaching, 30(1), 85-106.
    Kulm, G. (1977). Laboratory and lecture approaches to mathematics instruction for concrete and formal students. Lafayette, IN:Purdue University. ED 139657.
    Linn, M. C. (1987). An apple a day. Science and Children, 25(3), 15-18.
    Newton, D. P., & Newton, L. D. (1995). Use analogy to help young children understand. Educational Studies(Carfax Publishing), 21(3), 379-394.
    Nersessian, N. J.(1992). How do scientists think?Capturing the dynamics of conceptual change in science, Minnesota Studies in the Philosophy of Science(XV):Cognitive Models of Science, R. N. Giere(Eds.).Press:the University of Minnesota.
    Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens(Eds), Mental model. New Jersey and London:Lawrence Erlbaum.
    Nussbaum, J., & Novick, S. (1982). Alternative framework, conceptual conflict and accommodation. Instructional Science, 11, 183-208.
    Osborne, R., & Freyberg, P. (1985). Learning in Science. London:Heinemann.
    Pintrich, P. R., Max, R. W. & Boyle, R. A. (1993). Beyond cold conceptual change:The role of motivational beliefs and classroom contextual factors in process of conceptual change. Review of Educational Research, 63(2), 167-199.
    Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception : toward a theory of conceptual change. Science Education, 66(2), 211-227.
    Rumelhart, D. E., & Norman, D. A. (1981). Analogical processes in learning.
    In J. R. Anderson(Ed.), Cognitive Skills and Their Acquisition. Hillsdale, N. J. Lawrence Erlbaum Associates, Inc, 335-359.
    Spiro, R. J., Feltovich, P. J., Coulson, R. L., & Anderson, D. K. (1989). Multiple analogies for complex concepts:Antidotes for analogy-induced misconception in advanced knowledge acquisition. In S. Vosniadou & A. Ortony(Eds), Similarity and Analogical Reasoning. New York:Cambridge University Press. 499-531.
    Stavy, R., & Berkovitz, B. (1980). Cognitive conflict as a basis for teaching quantitative aspects of the concept of temperature. Science Education, 64(5), 679-692.
    Stavy, R. (1990). Children's conception of changes in state of matter:from liquid(or solid)to gas. Journal of Research in Science Teaching, 28(4), 305-313.
    Sternberg R. J. (1977). Component process in analogical reasoning. Psychological Review, 84(4), 353-378.
    Strike, K. A., & Posner, G. J. (1985). A conceptual change view of learning and understanding. In L. T. West & A. L. Pines(Eds.), Cognitive Structure and Conceptual Change, 211-231. Academics Press, Inc.
    Strike, K. A., & Posner, G. J. (1992). A revisionist theory of conceptual change. In R. Duschl & R. Hamilton(Eds.), Philosophy of Science, Cognitive Science and Educational Theory and Practice. Albany, NY:SUNY Press.
    Thagard, P. (1992). Conceptual Revolutions. Princeton, NJ:Princeton University Press.
    Thiele, R. B., &Treagust, D. F. (1991). Using analogies in secondary chemistry teaching .The Australian Science Teachers Journal, 37(2), 10-14.
    Tiberghien, A. (1980). Modes and conditions of learning-an example:the learning of aspects of the concept of heat. In W. F. Archenhold et al.(Eds.), Cognitive Development Research in Science and Mathematics. 288-309.
    Tiberghien, A. (1994). Modeling as a basis for analyzing teaching-learning
    situations.〔special issue〕. Learning and Instruction, 4, 71-87.
    Treagust, D. F., Duit, R., & Joslin, P. (1992). Science Teachers' use of
    analogies:observations from classroom practice. International Science Education,14 (4), 413-422.
    Treagust, D. F., Harrison, A. G., & Venville, G. J. (1998). Teaching science effectively with analogy : An approach for preservice and inservice teacher education. Journal of Science Teacher Science, 9(2), 85-101.
    Tyson,L.M., Venville,G. J., Harrison, A. G., & Treagust D. F. ( 1997). A
    multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 387-402.
    Venille, G. J., Bryer, L., & Treagust, D. F. (1994). Training students in the use
    of analogies to enhance understanding in science, Australian Science Teachers Journal, 40(2), 60-66.
    Venille, G. J., &Treagust, D. F. (1996). The role of analogies in promoting
    conceptual change in biology, Instructional Science, 24, 295-320.
    Vosniadou, S. (1989). Analogical reasoning as a mechanism in knowledge
    acquisition:A developmental perspective. In S. Vosniadou & A. Ortony
    (Eds.), Similarity and analogical reasoning. London:Cambridge University Press.
    Vosniadou, S., & Brewer, W. F. (1994). Mental models of the day/night cycle. Cognition Science, 18, 123-183.
    Vosniadou,S. (1994). Capturing and modeling the process of conceptual
    change. Learning and Instruction,4,45-69.
    Vosniadou, S.&Brewer, W. F. (1987). Theories of knowledge restructuring in development. Review of Educational Research, 57(1), 51-67.
    Wiser, M., & Kipman, D. (1988). The differentiation of heat and temperature:an evaluation of effect of micromputer models on students'misconceptions. ERIC Document No:ED 303367.
    Wiser, M., others (1988). Can models foster conceptual change?The case of heat and temperature . ERIC Document No:ED 303365.
    Wong, E. D. (1993). Understanding the generative capacity of analogies as a tool for explaination. Journal of Research in Science Teaching, 30(10), 1259-1272.
    Zeitoun, H. H. (1984). Teaching scientific analogies:a proposal model. Research in Science & Technological Education, 2(2), 107-125.

    QR CODE