簡易檢索 / 詳目顯示

研究生: 任宗浩
Tsung-Hau Jen
論文名稱: 不同學習階段和不同學習成就的中學生其力學概念組織之研究
The Study of Secondary School Students' Concept Organizations in Mechanics
指導教授: 李田英
Lee, Tien-Ying
學位類別: 博士
Doctor
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 174
中文關鍵詞: 中學教育高中生國中生物理力學認知結構概念組織分類
英文關鍵詞: secondary school education, senior high students, junior high students, physics, mechanics, cognitive structure, concept organization, classification
論文種類: 學術論文
相關次數: 點閱:393下載:46
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一個「形式」和「內涵」的二維認識架構以了解學生的概念組織,並藉此架構探討﹙1﹚中學生在力學概念組織上的差異,以及﹙2﹚國中生經過常態教學方式學習力學概念前、後,以及分類時提供概念特質間的因果關係對其分類的影響。研究包含兩個實驗,實驗一以「卡片分類」的方法,針對60名國三學生、60名高中生以及5位物理博士,探討不同學習階段和不同學習成就的受試者在力學概念組織型態上的差異。受試者的分類理由經三位編碼者按其敘述形式與內涵編碼之後,進行「學習階段」與「學習成就」二因子多變量變異數分析。實驗結果顯示﹙1﹚高中組依據「後設─名義的」理由分類之比例,顯著高於國中組﹙p<.05﹚;﹙2﹚「高學習成就群」依據「後設─功能的」和「後設─名義的」理由分類之比例均顯著高於「低學習成就群」﹙p<.05﹚;此結果顯示「形式」與「內涵」之二維認識架構的確能夠反映中學生在概念組織型態上之差異。實驗二根據不同學校和不同老師以班級為單位,將119名國三學生分成實驗組﹙58人﹚和控制組﹙61人﹚,研究者利用自行發展的「概念學習偏好」測驗﹙重測信度0.72至0.85﹚探討一般國中常態物理教學以及測驗提示因果脈絡對於國中生概念分類的影響。研究結果顯示︰﹙1﹚對於新的物理概念,國中生顯著偏好以「後設性」和「功能性」特徵分類概念﹙p<.05﹚;﹙2﹚對已學過的力學概念,國中生顯著偏好以「關聯性」特徵分類概念﹙p<.05﹚;﹙3﹚國中生經過常態物理教學方式學習力學概念後,以「後設性」和「功能性」概念特徵分類之比例顯著降低﹙p<.05﹚;﹙4﹚對已學過的力學概念,提示因果脈絡顯著增加國中生以「後設性」和「功能性」概念特徵分類之比例﹙p<.05﹚。

    This study proposed a two-dimensional framework of cognitive structure as a way to understand how students organize their concepts learned. Equipped with this framework, this study investigated into two issues. First, are there any differences among junior and senior high students with respect to their organization of concepts in mechanics? Second, will the provision of hints towards the characteristics among concepts affect students in their subsequent classification of those concepts? Two experiments were conducted for these purposes.
    The first experiment focused on the differences among 60 9th graders, 60 senior high students and 5 physics experts regarding the way they organize concepts in mechanics via a card sorting approach. The reasons behind such categorization were then coded independently by three raters, and a two way MANOVA was then performed with “grade level” and “learning achievement” as the two factors. The results of the first experiment revealed that secondary school students differed in terms of the “form” and “content” of their concept organization. Furthermore, the percentage of high school students who belonged to the “meta-descriptive/nominal” group was significantly greater than that of junior high students. It was also found that the percentage of students who belong to the “meta-descriptive/nominal” and “meta-descriptive/functional” group were significantly higher for the high achievers than for the low achievers.
    The second experiment focused on the second purpose of this study. It was conducted on 119 ninth graders from two different schools and separated them into an experimental group (with 58 students) and a control group (with 61 students) setup. An instrument that measured disposition towards concept learning was specially designed for this purpose. Test-retest reliabilities for its various sub-scales were in the range from .72 to .85. The results of this experiment revealed that junior high students were inclined to classify newly learned concepts in physics according to the “meta-descriptive” and “functional” approach. Moreover, they tended to use the associative characteristics of concepts as a means to categorize learned concepts in mechanics. It was also found that students tended to retract from using the meta-descriptive and functional characteristics to categorize learned concepts in mechanics. Lastly, it was found that the provision of causal effect information increased the probability of using the meta-descriptive and functional characteristics to categorize learned concepts in mechanics by junior high students.

    第一章 緒論………………………………………………………………1 第一節 研究背景與動機………………………………………1 第二節 研究目的………………………………………………6 第三節 研究問題………………………………………………6 第四節 研究假設………………………………………………7 第五節 研究範圍………………………………………………7 第六節 研究限制………………………………………………8 第七節 名詞解釋………………………………………………9 第八節 研究假說………………………………………………12 第二章 文獻探討……………………………………………………………16 第一節 哲學背景………………………………………………16 第二節 分類與概念組織………………………………………27 第三節 專家生手的差異………………………………………33 第四節 本研究之理論架構與模型……………………………39 第三章 實驗一之研究方法與結果…………………………………………43 第一節 實驗一之研究方法……………………………………43 第二節 實驗二之研究方法……………………………………55 第四章 研究結果與討論……………………………………………………66 第一節 實驗一之結果與分析…………………………………66 第二節 實驗二之結果與分析…………………………………86 第三節 假說驗證………………………………………………109 第四節 結果討論………………………………………………115 第五章 總結、結論與建議…………………………………………………121 第一節 研究總結………………………………………………121 第二節 結論……………………………………………………123 第三節 建議……………………………………………………124 參考文獻 ……………………………………………………………………127 附錄一 力學概念評量工具…………………………………………………141 附錄二 力學概念分類測驗…………………………………………………153 附錄三 概念學習偏好問卷…………………………………………………157 圖目次 圖2.3.1:問題表徵模型…………………………………………………….35 圖2.3.2﹙a﹚︰學科專家的「概念知識」、「表徵問題」與 「解題策略」三者間之關係圖………………………………38 圖2.3.2﹙b﹚︰學科生手的「概念知識」、「表徵問題」與 「解題策略」三者間之關係圖……………………………….38 圖2.4.1:本研究之二維認識架構………………………………………..42 圖3.1.1:實驗一之分類理由編碼向度圖…………………………………49 圖3.1.2︰實驗一之資料分析流程圖……………………………………..54 圖3.2.1︰實驗二樣本選取示意圖………………………………………56 圖3.2.2︰「概念學習偏好測驗」試題設計示意圖………………………57 圖3.2.3︰例示版本一之「概念學習偏好測驗」試題……………………60 圖3.2.4︰例示版本二之「概念學習偏好測驗」試題……………………61 圖3.2.5︰圖示實驗二研究設計………………………………...…………62 圖4.1.1︰專家組、高中組與國中組受試者「力學概念評量」 結果之盒型分布圖…………………………………...…………67 圖4.1.2︰專家組、高學習成就組與低學習成就組受試者「力學 概念評量」結果之盒型分布圖………………………………..68 圖4.1.3︰各組受試者「力學概念評量」結果之盒型分布圖…………...…69 圖4.1.4︰各組受試者完成分類作業所需時間之盒型分布圖...…………71 圖4.1.5︰各組受試者完成分群數目之盒型分布圖……………………...71 圖4.1.6︰各組受試者根據「關聯—名義的」理由分群比例之盒型圖…74 圖4.1.7︰各組受試者根據「關聯—功能的」理由分群比例之盒型圖…75 圖4.1.8︰各組受試者根據「後設—名義的」理由分群比例之盒型圖…77 圖4.1.9︰各組受試者根據「後設—功能的」理由分群比例之盒型圖…78 圖4.1.10︰各組受試者平均採四個象限理由作為分群依據之比例…….80 圖4.1.11︰國中組和高中組不同類型分類理由比例長條圖………..….84 圖4.1.12︰高成就群和低成就群不同類型分類理由比例長條圖……….85 圖4.2.1︰控制組在力學概念學習前後,對「真實」和「虛擬」 物理概念之不同類型特徵敘述之偏好…………………………89 圖4.2.2︰實驗組在力學概念學習前後,對「真實」和「虛擬」 物理概念不同類型特徵敘述之偏好…………………………….89 圖4.2.3︰「學習前後」和「測驗情境」對TAM﹙R﹚的交互作用圖….100 圖4.2.4︰「學習前後」和「測驗情境」對TNF﹙R﹚的交互作用圖….103 圖4.2.5︰「學習前後」和「測驗情境」對TAM﹙V﹚的交互作用圖….106 圖4.2.6︰「學習前後」和「測驗情境」對TNF﹙V﹚的交互作用圖….108 表目次 表2.1.1:檢驗因果推論相關線索之研究…………………………………23 表2.3.1:物理專家與生手在「概念組織」、「問題表徵」以及 「解題技能」上的差異………………………………………..37 表3.1.1︰實驗一國中組和高中組之樣本人數和背景…………………...44 表3.1.2︰力學概念評量工具之正確答案對應概念………………….…. 46 表3.1.3:力學概念分群理由編碼規則…………………………………..49 表3.2.1︰概念偏好試題向度分析………………………………………..58 表4.1.1︰不同學習階段受試者之力學概念評量結果………………… 66 表4.1.2︰不同學習成就受試者之力學概念評量結果…………………68 表4.1.3︰各組受試者力學概念評量結果………………………………..69 表4.1.4︰各組受試者的平均分類時間與分類群數……………………..70 表4.1.5︰各組受試者在不同象限分類理由之數量...……………………72 表4.1.6︰各組受試者採「關聯─名義的」理由之數目及所佔比例……..73 表4.1.7︰各組受試者「關聯─功能的」理由之數目及所佔比例………75 表4.1.8︰各組受試者「後設─名義的」理由之數目及所佔比例………76 表4.1.9︰各組受試者「後設─功能的」理由之數目及所佔比例………78 表4.1.10︰各組受試者採四個象限理由作為分群依據之比例……….…79 表4.1.11︰「學習階段」與「學習成就」二因子,對「分群 數目」和「分群時間」之MANOVA分析結果………………81 表4.1.12︰「學習階段」與「學習成就」對RAN、RAF、RMN 和RMF之MANOVA分析結果……………………….………..83 表4.2.1︰實驗組和控制組在力學單元學習前後的FCI成績以 及增加成績之多變量分析……………………………………86 表4.2.2︰實驗組和控制組在力學單元學習前後的力學成績及 進步成績多變量之事後t檢定結果……………………………87 表4.2.3︰力學單元學習前後,控制組和實驗組在「關聯」— 「後設」﹙TAM﹚以及「名義」—「功能」﹙TNF﹚兩個 向度上的敘述特徵偏好………………………..………………88 表4.2.4︰控制組在學習前後,對概念特徵偏好之平均數假設 檢定結果………………………………………………………..90 表4.2.5︰實驗組在學習前後,對概念特徵偏好之平均數假設 檢定結果…………………………………………………..……93 表4.2.6︰「測驗情境」與「學習前後」二因子,對TAM﹙R﹚、 TNF﹙R﹚、TAM﹙V﹚和TNF﹙V﹚之MANOVA分析結 果摘要表……………………………………………………….95 表4.2.7︰「學習前後」和「測驗情境」交互作用顯著後, 「學習前後」變因之單純主要效果考驗………………..…..96 表4.2.8︰「學習前後」和「測驗情境」交互作用顯著後, 「測驗情境」變因之單純主要效果考驗………………..…..97 表4.2.9︰在 「學習前後」和不同「測驗情境」之各種狀況 下, TAM﹙R﹚之平均值和標準差……………………………99 表4.2.10︰「學習前後」和「測驗情境」對TAM﹙R﹚的交互 作用以及單純主要效應………………………………………100 表4.2.11︰在 「學習前後」和不同「測驗情境」之各種狀況 下, TNF﹙R﹚之平均值和標準差…………………………..102 表4.2.12︰「學習前後」和「測驗情境」TNF﹙R﹚的交互 作用以及單純主要效應………………………………………103 表4.2.13︰在 「學習前後」和不同「測驗情境」之各種狀況 下, TAM﹙V﹚之平均值和標準差…………………………..105 表4.2.14︰「學習前後」和「測驗情境」對TAM﹙V﹚的交互 作用以及單純主要效應………………………………………105 表4.2.15︰在 「學習前後」和不同「測驗情境」之各種狀況 下, TNF﹙V﹚之平均值和標準差…………………………..107 表4.2.16︰「學習前後」和「測驗情境」TNF﹙V﹚的交互 作用以及單純主要效應………………………………………108

    任宗浩 (2001): 心智模式之動態變化─物理現象的觀察與詮釋,科學教育學刊, 9(2), 1-22。
    車文博 (1996): 西方心理學史。台北:東華書局。
    岳長齡等編 (1991): 世界哲學寶庫。北京: 中國廣播電視出版社。
    林靜雯 (1990): 由概念改變及心智模式初探多重類比對國小四年級學生電學概念學習之影響。台北市︰國立台灣師範大學碩士論文﹙未出版﹚。
    邱美虹、侯政宏和唐國詩 (1997): 高一學生岩石分類表現之研究。教育研究資訊, 5(2), 93-104。
    張震東編譯 (1973): 哲學的主要課題。台北市: 國立編譯館。
    許良榮 (1997): 科學課文結構對於科學學習的影響。台北市︰國立台灣師範大學碩士論文﹙未出版﹚。
    郭重吉、江武雄、陳美琳和王春源 (1994): 從建構主義的觀點探討國中理化教學之改進。中華民國第十屆科學教育學術研討會論文彙編, 217-237。
    陳忠志 (1986): 大一學生力學錯誤概念之綜合探討。中華民國大學院校普通物理教學及實驗研討會論文集, 62-66。
    陳忠志 (1990): 大一學生物理學錯誤概念之研究﹙IV﹚—溫度與熱學錯誤概念。行政院國家科學委員會專題研究計劃成果報告﹙計劃編號︰NSC 79-0111-S-017-04﹚。
    陳俊輝 (1992): 哲學的基本架構。台北市: 水牛出版社。
    Ahn, W. K., Gelman, S. A., Amsterlaw, J. A., Hohenstein, J., & Kalish, C. W. (2000). Causal status effect in children’s categorization. Cognition, 76(2), B35-B43.
    Ahn, W., Kalish, C.W., Medin, D.L., & Gelman, S.A. (1995). The role of covariation versus mechanism information in causal attribution. Cognition, 54, 299–352.
    Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Lawrence Erlbaum Associates.
    Anderson, J. R. (1995). Cognitive psychology and its implication (4th Ed.). New York: W. H. Freeman and Company.
    Armstrong, S., Gleitman, L. and Gleitman, H. (1983). What some concepts might not be. Cognition, 13, 263-308.
    Arons, A. B. (1984). Student patterns of thinking and reasoning, Part Two. The Physics Teacher, 22, 21-26.
    Blake, G. (1995). Skills used in the workplace: What every physics student (and professor) should know. Paper presented at the AAPT Summer 1995 Meeting, Spokane, WA.
    Bransford, J. D., Brown, A. L., & Cocking, R. R. (1999). How people learning: Brain, mind, experience and school. Washington: National Academy Press.
    Bullock, M., & Gelman, R. (1979). Preschool children's assumptions about cause and effect: Temporal ordering. Child Development, 50, 89-96.
    Bullock, M., Gelman, R., & Baillargeon, R. (1982). The development of causal reasoning. In W. Freidman (Ed.), The developmental psychology of time (pp. 209-254). New York: Academic Press.
    Bunge, M. (1979). Causality and modern science (3rd rev. ed.). New York: Academic.
    Bybee, R. W. (1997). Achieving scientific literacy: From purposes to practices. Portsmouth, NH: Heinemann Publishing.
    Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press.
    Carnap, R. (1950). Empiricism, semantics, and ontology. Revue Intermationale de Philosophie, 4, 20-40. Reprinted in the Supplement to Meaning and Necessity: A Study in Semantics and Modal Logic, enlarged edition (1956). University of Chicago Press.
    Cheng, P. W., & Novick, L. R. (1990). A probabilistic contrast model of causal induction. Journal of Personality and Social Psychology, 58, 545-567.
    Cheng, P. W., & Novick, L. R. (1990). Where is the bias in causal attribution? In K. J. Gilhooly, M. T. G. Keane, R. H. Logie, & G. Erdos (Eds.), Lines of thinking: Reflections on the psychology of thought(Vol. 1, pp. 181-197). Chichester, England: Wiley.
    Cheng, P. W., & Novick, L. R. (1992). Covariation in natural causal induction. Psychological Review, 99, 365-382.
    Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.), Cognitive Models of science: Minnesota studies in the philosophy of science (pp. 129-186). Minneapolis, MN: University of Minnesota Press.
    Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121-152.
    Chi, M. T. H., Glaser, R., & Rees, E. (1982). Expertise in problem solving. In R.J. Sternberg (ed.), Advances in the Psychology of Human Intelligence (Vol. 1). Hillsdale, NJ: Erlbaum.
    Chi, M. T. H., Slotta, J. D., & de Leeuw. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27-43.
    Churchland, P. M. (1988). Matter and consciousness. Cambridge, MA: MIT Press.
    Cohen, B. (1985). Revolution in science. Cambridge: Harvard University Press.
    de Purucker, G. et al. (Eds) . (1999). Encyclopedic Theosophical Glossary. Theosophical University Press Online Edition . www.theosociety.org/ pasadena /etgloss/etg-hp.htm
    deGroot, A.D. (1965). Thought and Choice in Chess. The Hague, the Netherlands: Mouton.
    di Sessa, A. A. (1933). Toward a epistemology of physics. Cognition and Instruction, 10, 105-225.
    Egan, D.E., & Schwartz, B.J. (1979). Chunking in recall of symbolic drawings. Memory and Cognition, 7, 149-158.
    Ehrlich, K., & Soloway, E. (1984). An empirical investigation of the tacit plan knowledge in programming. In J. Thomas and M.L. Schneider (Eds), Human factors in computer systems( pp. 113-134). Norwood, NJ: Ablex.
    Estes, W. K. (1986). Array models for category learning. Cognitive Psychology, 18, 500-549.
    French, A. P. (1997). The nature of physics. In A.Tiberghien, E. Leonard Jossem, & J. Barojas (Eds.), Connecting research in physics education with teacher education. An I.C.P.E. Book &copy; International Commission on Physics Education.
    Gelman, S. A., & Markman, E. M. (1986).  Categories and induction in young children. Cognition, 23, 183-209.
    Gelman, S. A., & Markman, E. M. (1987).  Young children’s inductions from natural kinds: The role of categories and appearances.  Child Development, 58, 1532-1541.
    Gelman, S. A., & Wellman, H. M. (1991). Categories and causality. In R. Pasnak, & M. L. Howe (Eds.), Emerging themes in cognitive development (pp. 3-32). New York: Springer.
    Glaser, R. (1992). Expert knowledge and processes of thinking. In D.F. Halpern (ed.), Enhancing Thinking Skills in the Sciences and Mathematics (pp. 63-75). Hillsdale, NJ: Erlbaum.
    Halloun I. A. & Hestenes, D. (1985). The initial knowledge state of college physics students. American Journal of Physics , 53, 1043-1055.
    Halloun, I. B., & Hestenes, D. (1987). Modeling instruction in mechanics. American Journal of Physics, 55, 455-462.
    Hammer, D. (1989). Two approaches to learning physics. The Physics Teacher, 27, 664-670.
    Harre, R., & Madden, E. H. (1975). Causal powers: A theory of natural necessity. Oxford: Blackwell.
    Hestenes, D., Wells, M., & Swackhammer, G. (1992). Force concept inventory. The Physics Teacher, 30, 141-158.
    Hinsley, D.A., Hayes, J.R., & Simon, H.A. (1977). From words to equations: Meaning and representation in algebra word problems. In M.A. Just, & P.A. Carpenter (Eds), Cognitive Processes in Comprehension (pp. 89-106). Hillsdale, NJ: Erlbaum.
    Hume, D. (1960). A treatise of human nature. Oxford: Clarendon Press. (Original work published in 1739)
    Keil, F. C., & Batterman, N. (1984). A characteristic- to-defining shift in the development of word meaning. Journal of Verbal Learning and Verbal Behavior, 23, 221-236.
    Keil, F. C., Smith, W. C., Simon, D. J., & Levin, D. T. (1998). Two dogmas of conceptual empiricism: implications for bybrid models of the structure of knowledge. Cognition, 65, 103-135.
    Keil, F.C. (1989). Concepts, kinds, and cognitive development. Cambridge, MA: MIT Press.
    Kelley, H. H. (1967). Attribution theory in social psychology. Nebraska Symposium on Motivation, 15, 192–238.
    Kuhn, D., Amsel, E., & O’Loughlin, M. (1988). The development of scientific thinking skills. New York: Academic Press.
    Kuhn, T. S. (1970). The Structure of Scientific Revolutions. The University of Chicago Press.
    Kun, A. (1978). Evidence for preschoolers' understanding of causal direction in extended causal sequences. Child Development, 49, 218-222.
    Larkin, J., McDermottt, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance in solving physics problems. Science, 208, 1335-1342.
    Larkin, J.H. (1979). Information processing models in science instruction. In J. Lochhead and J. Clement (eds), Cognitive Process Instruction (pp. 109-118). Hillsdale, NJ: Erlbaum.
    Larkin, J.H. (1981) Enriching formal knowledge: A model for learning to solve problems in physics. In J. R. Anderson (ed.), Cognitive Skills and Their Acquisition (pp. 311-334). Hillsdale, NJ: Erlbaum.
    Larkin, J.H. (1983). The role of problem representation in physics. In D. Gentner and A.L. Stevens (eds.), Mental Models (pp. 75-98). Hillsdale, NJ: Erlbaum.
    Larkin, J.H., & Simon, H.A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65-69.
    Lawson, R.A. & McDermott, L.C. (1987). Student understanding of the work-energy and impulse-momentum theorems. American Journal of Physics, 55, 811-817.
    Leonard, W.J., Gerace, W.J., Dufresne, R.J., & Mestre, J.P. (1994). Concept-based problem solving in physics. UMPERG technical report 1994#08-APR#1-v.2-16pp.
    Lesgold, A.M. (1988). Problem solving. In R.J. Sternberg and E.E. Smith (Eds. ), The psychology of human thoughts. New York: Cambridge University Press.
    Margolis, E. (1994). A reassessment of the shift from the classical theory of concepts to prototype theory. Cognition, 51, 73-89.
    Markman, E. M. (1989). Categorization and naming in children: Problem of induction. Cambridge, MA: MIT Press.
    Markman, E. M. (1993). Ways in which children constrain word meanings. In E. Dromi (Ed.), Language and cognition: A developmental perspective (pp. 61-87). Norwood, NJ: Ablex Publishing Corporation.
    Markman, E. M., & Callanan, M. A. (1983). An analysis of hierarchical classification. In R. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 2). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Markman, E. M., & Hutchinson, J. E. (1984). Children’s sensitivity to constraints on word meaning: taxonomic versus thematic relations. Cognitive Psychology, 16, 1-27.
    McDermott, L. C. (1984). Research on conceptual understanding in mechanics. Physics Today, 37(7), 24-32.
    McDermott, L. C., and Shaffer, P. S. (1992). Research as a guide for curriculum development: An example from introductory electricity. Part I: Investigation of student understanding. American Journal of Physics, 60(11), 994-1003.
    Medin, D. L., and Ortony, A. (1989). Psychological essentialism. In S. Vosniadou, & Ortony (Eds.), Similarity and analogical reasoning (pp. 179-195). Cambridge: Cambridge University Press.
    Medin, D. L., Wattenmaker, W. D., & Hampson, S. (1987). Family resemblance, concept cohesiveness, and category construction. Cognitive Psychology, 19, 242-279.
    Mendelson, R. & Shultz, T. R. (1976). Covariation and temporal contiguity as principles in young children. Journal of Experimental Child Psychology, 22, 408-412.
    Murphy, G. L. & Medin, D. L. (1985). The role of theories in conceptual coherence. Psychological Review, 92, 289-316.
    Neisser, U. (1967). Cognitive Psychology. Englewood Cliffs, NJ: Prentice-Hall.
    Nelson, K. E. (1974). Concept, word, and sentence: Interrelations in acquisition and development. Psychological Review, 81, 267-285.
    Nosofsky, R. (1988). Similarity, frequency, and category representation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 104-114.
    Osborne, J. F. (1996). Beyond constructivism. Science Education, 80(1), 53-82.
    Piaget, J. (1979). The child’s conception of the world. Totowa, NJ: Littlefield, Adams.
    Pintrich, P. R. (1999). Motivational beliefs as resources for and constraints on conceptual change. In W. Schnotz, S. Vosniadou, & M. Carretero (Eds.), New perspectives on conceptual change (pp. 33-50). Oxford: An imprint of Elsevier Science.
    Redish, E. F. (1994). The implications of cognitive studies for teaching physics. American Journal of Physics, 62(6), 796-803.
    Reif, F. (1986). Scientific approaches to science education. Physics Today, 39(11), 48-54.
    Reif, F. (1995). Millikan Lecture 1994: Understanding and teaching important scientific thought processes. American Journal of Physics, 63(1), 17-32.
    Robinson, C.S., & Hayes, J.R. (1978). Making inferences about relevance in understanding problems. In R. Revlin, & R.E. Mayer (Eds.), Human Reasoning. Washington, DC: Winston.
    Robinson, D. N. (1999). Rationalism versus empiricism in cognition. In R. J. Sternberg (Ed.), The Nature of cognition. Cambridge, MA: MIT Press.
    Rosch, E. & Mervis, C. B. (1975). Family resemblances: studies in the internal structure of categories. Cognitive Psychology, 7, 573-605.
    Rosch, E. (1973). On the internal structure of perceptual and semantic categories. In T.E. Moores (Ed.), Cognitive development and the acquisition of language. New York: Academic Press.
    Rosch, E., Mervis, C., Gray, D., Johnson, D., & Boyes-Braehm, P. (1976). Basic objects in natural categories. Cognitive Psychology, 3, 382-439.
    Ross, B. H., & Spalding, T. L. (1994). Concept and category. In R. J. Sternberg (Ed.), Thinking and problem solving. San Diago:Academic Press.
    Roth, E. M., & Shoben, E. J. (1983). The effects of context on the structure of categories. Cognitive Psychology, 15, 346-378.
    Roth, E.M., & Shoben, E.J. (1983). The effects of context on the structure of categories. Cognitive Psychology, 15, 346–378.
    Ryle, G (1949). The concept of mind. London: Hutchinson.
    Salmon, W. C. (1989). Four decades of scientific explanation. Minneapolis, MN: University of Minnesota Press.
    Schoenfeld, A.H. (1985). Mathematical problem solving. Orlando, FL: Academic Press.
    Schunn, C. D., & Vera, A. H. (1995). Causality and the categorization of objects and events. Thinking & Reasoning, 1(3), 237-284.
    Shapere, D. (1977). Scientific theories and their domains. In F. Suppe (Ed.), The structure of scientific theories ( 2nd Ed. ). Illinois: Univ. of Illinois Press.
    Shultz, T. R. & Mendelson, R. (1975). The use of covariation as a principle of causal analysis. Child Development, 46, 394-399.
    Shultz, T. R. & Ravinsky, F. (1977). Similarity as a principle of causal inference. Child Development, 48, 1552-1558.
    Shultz, T. R. (1982). Rules of causal attribution. Monographs of the Society for Research in Child Development, 47 (1, Serial No. 194).
    Shultz, T. R., & Kestenbaum, N. R. (1985). Causal reasoning in children. Annals of Child Development, 2, 195-249.
    Shultz, T. R., Altmann, E. & Asselin, J. (1986). Judging causal priority. British Journal of Developmental. Psychology, 4, 67-74.
    Siegler, R.S. & Liebert, R. M. (1974). Effects of contiguity, regularity, and age on children's inferences. Developmental Psychology, 10, 574-579.
    Simon, D.P., & Simon, H.A. (1978). Individual differences in solving physics problems. In R. Siegler (ed.), Children's Thinking: What Develops? (pp. 325-348). Hillsdale, NJ: Erlbaum.
    Simon, H.A. (1980). Problem solving and education. In D.T. Tuma and R. Reif (eds), Problem Solving and Education: Issues in Teaching and Research (pp. 81-96). Hillsdale, NJ: Erlbaum.
    Sloman, S. A. (1999). Rational versus arational models of thought. In R. J. Sternberg (Ed.), The Nature of Cognition (pp. 557-586). Cambridge, MA: MIT Press.
    Smith, E. E. (1995). Concepts and Categorization. In D. N. Osherson et al. (Eds), Thinking (Vol. 3)(pp. 3-33). Cambridge, MA: MIT Press.
    Smith, E. E., Patalano, A. L., & Jonides, J. (1998). Alternative strategies of categorization. Cognition, 65, 167-196
    Strike, K. A., & Posner G. J. (1992). A revisionist theory of conceptual change. In R. A. Duschl and R. J. Hamilton (Eds), Philosophy of science, cognitive psychology, and educational theory and practice (pp. 147-176). New York: State University of New York Press.
    Thagard, P. (1994). Conceptual revolutions. Princeton, NJ: Princeton University Press.
    Tiberghien, A. (1994). Modeling as a basis for analyzing teaching-learning situations. Learning and Instruction, 4, 71-87.
    Van Heuvelen, A. (1991). Overview, Case Study Physics. American Journal of Physics, 59, 898-907.
    Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4, 45-69.
    Vosniadou, S. (1999). Conceptual change research: State of the art and future directions. In W. Schnotz, S. Vosniadou, & M. Carretero (Eds.), New perspectives on conceptual change (pp.1-13). Oxford: An imprint of Elsevier Science.
    Weinberg, J. R. (1977). Ockham, Descartes, and Hume: Self-Knowledge, Substance, and Causality. Madison: University of Wisconsin Press.
    Wellman, H. M., &Gelman, S.A. (1992). Cognitive development: Foundational theories of core domains. Annual Review of Psychology, 43, 337–375.

    QR CODE