簡易檢索 / 詳目顯示

研究生: 楊奕邦
Yang, I Bang
論文名稱: 兩種附生蕨類可孕性葉及非孕性葉的生理生態比較研究
A study on ecophysiology differences between fertile and sterile leaves of two epiphytic ferns
指導教授: 林登秋
Lin, Teng-Chiu
口試委員: 林登秋
Lin, Teng-Chiu
江智民
Chiang, Jyh-Min
黃盟元
Huang, Meng-Yuan
口試日期: 2025/01/21
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 59
中文關鍵詞: 蕨類二型性附生植物生理生態光合作用物候氣孔密度
英文關鍵詞: fern dimorphism, epiphyte, ecophysiology, photosynthesis, phenology, stomatal density
研究方法: 實驗設計法
論文種類: 學術論文
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物的能量有限,在各種作用如繁殖、生長、光合作用等之間常要有所權衡。蕨類繁殖主要透過孢子,產生孢子可能對蕨類行光合作用等重要生理作用有所影響,但至今相關研究仍少。部分蕨類有二型葉,其中一型葉會產生孢子,稱作可孕性葉;另一型不會孕育出孢子,稱為非孕性葉。先前針對蕨類二型葉之研究多聚焦在地生蕨類,且研究對象之可孕性葉葉背幾乎被孢子囊堆佔滿,光合作用效率顯著低於非孕性葉。但因蕨類有豐富的葉型及生長形式,先前研究只涵蓋到很少部分的蕨類,因此所得結果之普遍性尚難確立。本研究檢驗福山試驗林伏石蕨及柳葉劍蕨兩種有著二型葉之附生蕨類,探討兩種葉型間物候、生理生態、形態特徵差異,包括光合作用效率、氣孔密度、滲透潛勢、葉綠素濃度等,試圖了解他們在繁殖、光合作用等之間的權衡及調適。研究結果兩種蕨類的非孕性葉和可孕性葉的光合作用速率、滲透勢能、葉綠素濃度都沒有顯著差異,而可孕性葉的氣孔密度顯著高於非孕性葉,柳葉劍蕨另測量了氣孔導度及細胞內二氧化碳濃度,在兩種葉片間也無顯著差異。結合過往研究推論,可孕性葉的葉面積、被孢子囊堆遮蓋的面積應是影響其光合作用效率的重要因素。伏石蕨及柳葉劍蕨的可孕性葉可以乘載孢子並有著和非孕性葉相似的光合作用效率,這可能是因為可孕性葉可能透過結構上的改變(如改變氣孔排列)使葉片能有如此功能但壽命較短可能為其代價。本研究針對兩種蕨類的二型性推論,伏石蕨及柳葉劍蕨的可孕性葉可能有著提高其繁殖量的優勢但付出壽命較短的代價。此主題還有許多值得繼續探討的面向,如景天酸代謝、葉片復水性等抗旱特徵和二型性的關聯等,需要更多研究才能較完整地了解蕨類「非孕性葉-可孕性葉」二型性的生理與生態意涵。

    The source and energy of plants are limited such that there are often trade-offs among growth, survival, reproduction and photosynthesis. Ferns primarily reproduce through spores, and the production of spores may affect key physiological processes such as photosynthesis. However, studies on this topic is limited to date. Some ferns have dimorphic leaves, one type produces spores, known as fertile leaves, and another type does not, known as sterile leaves. Previous studies on ferns with dimorphic leaves have mostly focused on terrestrial species, where the fertile leaves are almost completely filled with spores, resulting in reduced photosynthetic efficiency relative to sterile leaves. However, because ferns exhibit a wide variety of leaf and growth forms, previous studies have covered only a small portion of fern species, and therefore, the generalizability of their findings remains uncertain. This study examines two epiphytic ferns Lemmaphyllum microphyllum and Lomariopsis flaccida with dimorphic leaves, exploring differences in phenology, physiological ecology, and morphological characteristics between the two types of leaves, such as photosynthetic efficiency, stomatal density, osmotic potential, and chlorophyll concentration. The goal is to explain how these dimorphic ferns balance reproduction and photosynthesis, and the strategies they employ to adapt to these processes. The results showed no significant differences in photosynthetic efficiency, osmotic potential, or chlorophyll concentration between fertile and sterile leaves in both species. However, stomatal density of the fertile leaves was significantly higher than that of the infertile leaves. Additionally, for Lomariopsis flaccida, stomatal conductance and intracellular CO₂ concentration were not significantly different between the two types of leaves. This study, suggests that leaf area and the portion of the leaf covered by sporangia (spore-producing structures) could be important factors influencing the photosynthetic efficiency of fertile leaves. Both Lemmaphyllum microphyllum and Lomariopsis flaccida have fertile leaves capable of bearing spores while maintaining photosynthetic efficiency similar to that of infertile leaves. This suggests that structural modifications, such as changes in stomatal arrangement, may enable the fertile leaves to maintain much of the photosynthetic function, but this may come at the cost of a shorter lifespan. It is proposed that the fertile leaves of L. microphyllum and L. flaccida may provide an advantage by enhancing reproductive output at the cost of life span. There are still many hypotheses and research directions yet to be explored, such as the relationship between dimorphism and drought resistance traits like crassulacean acid metabolism (CAM) and leaf rehydration. Much work remains to be done in order to deepen our understanding of the ecophysiology of "sterile leaf - fertile leaf" dimorphism in ferns.

    第一章 緒論 1 第一節 研究背景與文獻評述 1 第二節 研究目的與重要性 11 第二章 材料與方法 12 第一節 研究地點 12 第二節 研究物種 12 第三節 各觀測與測量 15 第四節 統計分析 24 第三章 結果 25 第一節 物候 25 第二節 各項測量結果 27 第四章 討論 39 第一節 物候 39 第二節 各指標討論 41 第三節 可能假說 47 第四節 研究限制 49 第五節 未來展望 50 第五章 結論 51 第六章 引用文獻 52

    郭城孟,(2001)。蕨類圖鑑:台灣三百多種蕨類生態圖鑑,遠流,台灣。
    郭城孟,(2010)。蕨類圖鑑2進階珍稀篇,遠流,台灣。
    Ashman, T. L. (1994). A dynamic perspective on the physiological cost of reproduction in plants. The American Naturalist, 144(2), 300-316.
    Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59(1), 89-113.
    Baltzer, J. L., & Thomas, S. C. (2005). Leaf optical responses to light and soil nutrient availability in temperate deciduous trees. American Journal of Botany, 92(2), 214-223.
    Ball, J. T., Woodrow, I. E., & Berry, J. A. (1987, October). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In Progress in photosynthesis research: volume 4 proceedings of the VIIth international congress on photosynthesis providence, Rhode Island, USA, august 10–15, 1986 (pp. 221-224). Dordrecht: Springer Netherlands.
    Bauer, H., Gallmetzer, C., & Sato, T. (1991). Phenology and photosynthetic activity in sterile and fertile sporophytes of Dryopteris filix-mas (L.) Schott. Oecologia, 86, 159-162.
    Blankenship, R. E. (2021). Molecular mechanisms of photosynthesis. John Wiley & Sons.
    Britton, M. R., & Watkins Jr, J. E. (2016). The economy of reproduction in dimorphic ferns. Annals of Botany, 118(6), 1139-1149.
    Brodribb, T. J., & McAdam, S. A. (2011). Passive origins of stomatal control in vascular plants. Science, 331(6017), 582-585.
    Campany, C. E., Pittermann, J., Baer, A., Holmlund, H., Schuettpelz, E., Mehltreter, K., & Watkins Jr, J. E. (2021). Leaf water relations in epiphytic ferns are driven by drought avoidance rather than tolerance mechanisms. Plant, Cell & Environment, 44(6), 1741-1755.
    Campbell, W. J., Allen Jr, L. H., & Bowes, G. (1988). Effects of CO2 concentration on rubisco activity, amount, and photosynthesis in soybean leaves. Plant Physiology, 88(4), 1310-1316.
    Chambers, J. M. (2008). Software for data analysis: programming with R. New York: Springer.
    Chiou, W. L., Lin, J. C., & Wang, J. Y. (2001). Phenology of Cibotium taiwanense (Dicksoniaceae). Taiwan Journal for Science, 16(4), 209-215.
    Chiou, W. L., Martin, C. E., Lin, T. C., Hsu, C. C., Lin, S. H., & Lin, K. C. (2005). Ecophysiological differences between sterile and fertile fronds of the subtropical epiphytic fern Pyrrosia lingua (Polypodiaceae) in Taiwan. American Fern Journal, 95(4), 131-140.
    Chiu, T. Y., Chiou, W. L., & Huang, Y. M. (2013). Phenological differences between sterile and fertile fronds in a dimorphic fern, Osmundastrum cinnamomeum (L.) C. Presl (Osmundaceae). Taiwan Journal of Biodiversity, 15(4), 311-322.
    Croft, H., Chen, J. M., Luo, X., Bartlett, P., Chen, B., & Staebler, R. M. (2017). Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Global Change Biology, 23(9), 3513-3524.
    Dani, K. S., Mathew, J., Nila-Mohan, T. M., Antony, R., Suresh, S., & Kodandaramaiah, U. (2021). Pores versus spores: competition between photosynthesis and reproduction is constrained by leaf mass per unit area (LMA) in ferns. Biological Journal of the Linnean Society, 132(2), 346-358.
    Derzhavina, N. M. (2020). Ecological morphology of proto-epiphyte fern lemmaphyllum microphyllum C. Presl and its relation to the adaptogenesis. Contemporary Problems of Ecology, 13, 205-213.
    Douthe, C., Gago, J., Ribas-Carbó, M., Núñez, R., Pedrol, N., & Flexas, J. (2018). Measuring photosynthesis and respiration with infrared gas analysers. Advances in Plant Ecophysiology Techniques (pp. 51-75). Cham, Switzerland: Springer.
    Eberhard, S., Finazzi, G., & Wollman, F. A. (2008). The dynamics of photosynthesis. Annual Review of Genetics, 42(1), 463-515.
    Farquhar, G. D., & Richards, R. A. (1984). Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Functional Plant Biology, 11(6), 539-552.
    Fernández, H. (Ed.). (2018). Current advances in fern research. Oviedo, Spain: Springer International Publishing.
    Fujii, S., Nishida, K., Akitsu, T. K., Kume, A., & Hanba, Y. T. (2023). Variation in leaf mesophyll anatomy of fern species imposes significant effects on leaf gas exchange, light capture, and leaf hydraulic conductance. Photosynthetica, 61(1), 225-235.
    Gotsch, S. G., Nadkarni, N., Darby, A., Glunk, A., Dix, M., Davidson, K., & Dawson, T. E. (2015). Life in the treetops: ecophysiological strategies of canopy epiphytes in a tropical montane cloud forest. Ecological Monographs, 85(3), 393-412.
    Greer, G. K., & McCarthy, B. C. (2000). Patterns of growth and reproduction in a natural population of the fern Polystichum acrostichoides. American Fern Journal, 60-76.
    Hanba, Y. T., Nishida, K., Tsutsui, Y., Matsumoto, M., Yasui, Y., Sizhe, Y., Matsuura, T., & Kume, A. (2023). Leaf optical properties and photosynthesis of fern species with a wide range of divergence time in relation to mesophyll anatomy. Annals of Botany, 131(3), 437-450.
    Hanba, Y. T., Kogami, H., & Terashima, I. (2002). The effect of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand. Plant, Cell & Environment, 25(8), 1021-1030.
    Harshman, L. G., & Zera, A. J. (2007). The cost of reproduction: the devil in the details. Trends in Ecology & Evolution, 22(2), 80-86.
    Hietz, P., Wagner, K., Nunes Ramos, F., Cabral, J. S., Agudelo, C., Benavides, A. M., Cach-Pérez, M. J., Cardelús, C. L., Galván, N. C., Nascimento da Costa, L. E., de Paula Oliveira R., Einzmann H. J. R., de Paiva Farias R., Guzmán J.V., Kattge J., Kessler M., Kirby C., Kreft H., Krömer T., Males J., Monsalve, C. S., Moreno-Chacón M., Petter G., Reyes-García C., Saldaña A., Schellenberger C. D., Taylor A., Velázquez R. N., Wanek W., Woods C. L., Zotz, G. (2022). Putting vascular epiphytes on the traits map. Journal of Ecology, 110(2), 340-358.
    Hsia, Y. J. (2008). Fushan climate data: annual reports. Online: http://metacat. ndhu. edu. tw.
    Hsu, C. C., Lin, T. C., Chiou, W. L., Lin, S. H., Lin, K. C., & Martin, C. E. (2006). Canopy CO2 concentrations and Crassulacean acid metabolism in Hoya carnosa in a subtropical rain forest in Taiwan: consideration of CO2 availability and the evolution of CAM in epiphytes. Photosynthetica, 44, 130-135.
    Ivanova, L. A., & P'yankov, V. I. (2002). Structural adaptation of the leaf mesophyll to shading. Russian Journal of Plant Physiology, 49, 419-431.
    Ivanova, L. A., Tretyakova, A. S., Savitsky, E., Yudina, P. K., & Ivanov, L. A. (2024). Frond and mesophyll traits related to photosynthetic capacity and water‐use efficiency in ferns with different life‐forms ex situ. Annals of Applied Biology, 185(3), 396-409.
    Jayakumar, M., Eyini, M., Selvinthangadurai, P., Lingakumar, K., Premkumar, A., & Kulandaivelu, G. (1999). Changes in pigment composition and photosynthetic activity of aquatic fern (Azolla microphylla Kaulf.) exposed to low doses of UV-C (254 nm) radiation. Photosynthetica, 37, 33-38.
    Kalaji, H. M., Schansker, G., Brestic, M., Bussotti, F., Calatayud, A., Ferroni, L., Goltsev, V., Guidi, L., Jajoo, A., Li, P., Losciale, P., Mishra, V., Misra, A. N., Nebauer, S. G., Pancaldi, S., Penella, C., Pollastrini, M., Suresh, K., Tambussi, E., Yanniccari, M., Zivcak, M., Cetner, M. D., Samborska, I. A., Stirbet, A., Olsovska, K., Kunderlikova, K., Shelonzek, H., Rusinowski, S., & Bąba, W. (2017). Frequently Asked Questions About Chlorophyll Fluorescence, the Sequel. Photosynthesis Research, 132, 13-66.
    Karlsson, P. S., & Méndez, M. (2005). The resource economy of plant reproduction. In Reproductive Allocation in Plants (pp. 1-49). Academic Press.
    Kitajima, K., & Hogan, K. P. (2003). Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light. Plant, Cell & Environment, 26(6), 857-865.
    Kluge, M., Avadhani, P. N., & Goh, C. J. (1989a). Gas exchange and water relations in epiphytic tropical ferns. In Vascular Plants as Epiphytes: Evolution and Ecophysiology (pp. 87-108). Berlin, Heidelberg: Springer Berlin Heidelberg.
    Kluge, M., Friemert, V., Ong, B. L., Brulfert, J., & Goh, C. J. (1989b). In situ studies of Crassulacean acid metobolism in Drymoglossum piloselloides, an epiphytic fern of the humid tropics. Journal of Experimental Botany, 40(4), 441-452.
    Krause, A. G., & Weis, E. (1991). Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Biology, 42(1), 313-349.
    Lavoie‐Lamoureux, A., Sacco, D., Risse, P. A., & Lovisolo, C. (2017). Factors influencing stomatal conductance in response to water availability in grapevine: a meta‐analysis. Physiologia Plantarum, 159(4), 468-482.
    Lee, P. H., Huang, Y. M., & Chiou, W. L. (2008). The phenology of Osmunda claytoniana L. in the Tataka area, central Taiwan. Taiwan Journal of Forest Science, 23(1), 71-9.
    Lee P. H., Huang Y. M., Chiou W. L. (2018). Fern Phenology. In: Fernández H, editor. Current Advances in Fern Research. Switzerland: Springer International Publishing AG; p. 381-399.
    Lee, P. H., Lin, T. T., & Chiou, W. L. (2009a). Phenology of 16 species of ferns in a subtropical forest of northeastern Taiwan. Journal of Plant Research, 122, 61-67.
    Lee, P. H., Chiou, W. L., & Huang, Y. M. (2009b). Phenology of three Cyathea (Cyatheaceae) ferns in northern Taiwan. Taiwan Journal of Forest Science, 24(4), 233-242.
    Levins, R. (1968). Evolution in changing environments: some theoretical explorations (No. 2). Princeton University Press.
    Liu, Q., Jia, W., & Li, F. (2020). Determination of the most effective design for the measurement of photosynthetic light-response curves for planted Larix olgensis trees. Scientific Reports, 10(1), 11664.
    Llorens, C., Argentina, M., Rojas, N., Westbrook, J., Dumais, J., & Noblin, X. (2016). The fern cavitation catapult: mechanism and design principles. Journal of The Royal Society Interface, 13(114), 20150930.
    López-Pozo, M., Ballesteros, D., Laza, J. M., García-Plazaola, J. I., & Fernández-Marín, B. (2019). Desiccation tolerance in chlorophyllous fern spores: are ecophysiological features related to environmental conditions?. Frontiers in Plant Science, 10, 1130.
    Martin, C. E., Lin, T. C., Lin, K. C., Hsu, C. C., & Chiou, W. L. (2004). Causes and consequences of high osmotic potentials in epiphytic higher plants. Journal of Plant Physiology, 161(10), 1119-1124.
    Martin, S. L., Davis, R., Protti, P., Lin, T. C., Lin, S. H., & Martin, C. E. (2005). The occurrence of crassulacean acid metabolism in epiphytic ferns, with an emphasis on the Vittariaceae. International Journal of Plant Sciences, 166(4), 623-630.
    Mehltreter, K. (2006). Leaf phenology of the climbing fern Lygodium venustum in a semideciduous lowland forest on the Gulf of Mexico. American Fern Journal, 96(1), 21-30.
    Mehltreter, K., & GarcÍa-Franco, J. G. (2008). Leaf phenology and trunk growth of the deciduous tree fern Alsophila firma (Baker) DS Conant in a lower montane Mexican forest. American Fern Journal, 98(1), 1-13.
    Mellado-Mansilla, D., Zotz, G., Kreft, H., Sundue, M., & Kessler, M. (2021). The taxonomic distribution of chlorophyllous spores in ferns: an update. American Fern Journal, 111(2), 150-156.
    Moran, R. C. (1987). Sterile-fertile leaf dimorphy and evolution of soral types in Polybotrya (Dryopteridaceae). Systematic Botany, 617-628.
    Muchow, R. C., & Sinclair, T. R. (1989). Epidermal conductance, stomatal density and stomatal size among genotypes of Sorghum bicolor (L.) Moench. Plant, Cell & Environment, 12(4), 425-431.
    Murchie, E. H., & Lawson, T. (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany, 64(13), 3983-3998.
    Newell, E. A. (1991). Direct and delayed costs of reproduction in Aesculus californica. The Journal of Ecology, 365-378.
    Nishida, K., & Hanba, Y. T. (2017). Photosynthetic response of four fern species from different habitats to drought stress: relationship between morpho-anatomical and physiological traits. Photosynthetica, 55, 689-697.
    Noland, K., Norman, E., Peterson, C. L., & Richardson, M. L. (2017). Extrinsic factors influence phenology of the epiphytic hand fern (Cheiroglossa palmata). Botany, 95(9), 889-895.
    Obeso, J. R. (2002). The costs of reproduction in plants. New Phytologist, 155(3), 321-348.
    Odland, A. (1995). Frond development and phenology of Thelypteris limbosperma, Athyrium distentifolium, and Matteuccia struthiopteris in Western Norway. Nordic Journal of Botany, 15(3), 225-236.
    Ong, B. L., Koh, C. K., & Wee, Y. C. (1998). Relationship between fern development and CAM in Pyrrosia piloselloides (L.) Price. Photosynthetica, 34, 147-149.
    Palta, J. P. (1990). Leaf chlorophyll content. Remote Sensing Reviews, 5(1), 207-213.
    Paoli, L., & Landi, M. (2013). The photosynthetic performance of sterile and fertile sporophytes in a natural population of the fern Dryopteris affinis. Photosynthetica, 51, 312-316.
    Parra, M. J., Acuna, K., Corcuera, L. J., & Saldaña, A. (2009). Vertical distribution of Hymenophyllaceae species among host tree microhabitats in a temperate rain forest in Southern Chile. Journal of Vegetation Science, 20(4), 588-595.
    Peck, J. H., Peck, C. J., & Farrar, D. R. (1990). Influences of life history attributes on formation of local and distant fern populations. American Fern Journal, 80(4), 126-142.
    Prats, K. A., & Brodersen, C. R. (2021). Desiccation and rehydration dynamics in the epiphytic resurrection fern Pleopeltis polypodioides. Plant Physiology, 187(3), 1501-1518.
    Quintanilla, L. G., Aranda, I., Clemente-Moreno, M. J., Pons-Perpinyà, J., & Gago, J. (2023). Ecophysiological differentiation among two resurrection ferns and their allopolyploid derivative. Plants, 12(7), 1529.
    Rabinowitch EI, Govindjee. 1969. Photosynthesis. Chichester: Wiley & Sons.
    Ramírez-Martínez, A., Mondragon, D., & Rivera-García, R. (2021). Vascular epiphytes: The ugly duckling of phenological studies. Acta Biologica Colombiana, 26(2), 247-261.
    Reekie, E. G., & Bazzaz, F. A. (1987). Reproductive effort in plants. 1. Carbon allocation to reproduction. The American Naturalist, 129(6), 876-896.
    Remick, D. (1992). Measuring the costs of reproduction. Trends in Ecology & Evolution, 7(2), 42-45.
    Rezai, S., Etemadi, N., Nikbakht, A., Yousefi, M., & Majidi, M. M. (2018). Effect of light intensity on leaf morphology, photosynthetic capacity, and chlorophyll content in sage (Salvia officinalis L.). Horticultural Science and Technology, 36(1), 46-57.
    Rose, J. P., & Dassler, C. L. (2017). Spore production and dispersal in two temperate fern species, with an overview of the evolution of spore production in ferns. American Fern Journal, 107(3), 136-155.
    Sage, R. F., Sharkey, T. D., & Seemann, J. R. (1989). Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiology, 89(2), 590-596.
    Santesteban, L. G., Miranda, C., Barbarin, I., & Royo, J. B. (2015). Application of the measurement of the natural abundance of stable isotopes in viticulture: a review. Australian Journal of Grape and Wine Research, 21(2), 157-167.
    Sato, T. (1982). Phenology and wintering capacity of sporophytes and gametophytes of ferns native to northern Japan. Oecologia, 55, 53-61.
    Schmitt, J. L., & Windisch, P. G. (2012). Caudex growth and phenology of Cyathea atrovirens (Langsd. & Fisch.) Domin (Cyatheaceae) in secondary forest, southern Brazil. Brazilian Journal of Biology, 72, 397-405.
    Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675.
    Stirbet, A., Lazár, D., Guo, Y., & Govindjee, G. (2020). Photosynthesis: basics, history and modelling. Annals of Botany, 126(4), 511-537.
    Suissa, J. S., Barkoff, N., & Watkins, J. E. (2024). Extreme functional specialization of fertile leaves in a widespread fern species and its implications on the evolution of reproductive dimorphism. Ecology and Evolution, 14(7), e11552.
    Sundue, M., Vasco, A., & Moran, R. C. (2011). Cryptochlorophyllous spores in ferns: nongreen spores that contain chlorophyll. International Journal of Plant Sciences, 172(9), 1110-1119.
    Tanaka, Y., Sugano, S. S., Shimada, T., & Hara‐Nishimura, I. (2013). Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. New Phytologist, 198(3), 757-764.
    TFRI. (1989). A list of native plants of Fushan Experimental Forest. Taiwan Forestry Research Institute, Taipei, TW.
    Tseng, M. H., Lin, K. H., Huang, Y. J., Chang, Y. L., Huang, S. C., Kuo, L. Y., & Huang, Y. M. (2017). Detection of chlorophylls in spores of seven ferns. Journal of Plant Research, 130, 407-416.
    Vasco, A., Moran, R. C., & Ambrose, B. A. (2013). The evolution, morphology, and development of fern leaves. Frontiers in Plant Science, 4, 345.
    Vogelman, T. C., Nishio, J. N., & Smith, W. K. (1996). Leaves and light capture: light propagation and gradients of carbon fixation within leaves. Trends in Plant Science, 1(2), 65-70.
    Vogelmann, T.C. (1993) Plant tissue optics. Annual Review of Plant Biology, 44, 231-251.
    Wagner, W. H., JR. & F. S. Wagner. 1977. Fertile-sterile leaf dimorphy in ferns. Gardens’ Bulletin, Singapore, 30, 251–267.
    Wang, H., Pan, F., Liu, C., Yu, Y., & Hung, S. (2000). Vegetation classification and ordination of a permanent plot in the Fushan Experimental Forest, northern Taiwan. Taiwan Journal of Forest Science, 15(3), 411-428.
    Watkins Jr, J. E., Churchill, A. C., & Holbrook, N. M. (2016). A site for sori: ecophysiology of fertile–sterile leaf dimorphy in ferns. American Journal of Botany, 103(5), 845-855.
    Westbrook, A. S., & McAdam, S. A. (2021). Stomatal density and mechanics are critical for high productivity: insights from amphibious ferns. New Phytologist, 229(2), 877-889.
    Williams, G. C. (1966). Natural selection, the costs of reproduction, and a refinement of Lack's principle. The American Naturalist, 100(916), 687-690.
    Wintermans, J. F. G. M., & De Mots, A. (1965). Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta (BBA)-Biophysics including Photosynthesis, 109(2), 448-453.
    Wong, S. C., Cowan, I. R., & Farquhar, G. D. (1979). Stomatal conductance correlates with photosynthetic capacity. Nature, 282(5737), 424-426.
    Xiong, D., & Flexas, J. (2020). From one side to two sides: the effects of stomatal distribution on photosynthesis. New Phytologist, 228(6), 1754-1766.
    Xu, Z., & Zhou, G. (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany, 59(12), 3317-3325.
    Zhang, Q., Chen, J. W., Li, B. G., & Cao, K. F. (2009). Epiphytes and hemiepiphytes have slower photosynthetic response to lightflecks than terrestrial plants: evidence from ferns and figs. Journal of Tropical Ecology, 25(5), 465-472.
    Zotz, G., & Hietz, P. (2001). The physiological ecology of vascular epiphytes: current knowledge, open questions. Journal of Experimental Botany, 52(364), 2067-2078.

    下載圖示
    QR CODE