簡易檢索 / 詳目顯示

研究生: 吳易哲
Yi-Che WU
論文名稱: 柱面型共振腔模態之研究
Study of laser modes generated from a hemi-cylindrical cavity
指導教授: 陸亭樺
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 49
中文關鍵詞: 柱面型共振腔海更士積分ABCD法
英文關鍵詞: hemi-cylindrical laser cavity, Huygens integral, ABCD law
論文種類: 學術論文
相關次數: 點閱:153下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用柱面鏡作為雷射共振腔的前鏡來產生具有像散特性的空間模態。
    由於柱面鏡水平(x)方向和垂直(y)方向有不同的曲率半徑,造成雷射模態在x、y軸上有不同程度的聚焦,因而影響雷射模態在行進間的結構有所變化。我們針對這種特殊的共振腔進行實驗與理論分析。

    另外在外部加上一柱狀透鏡後,可以將高階Hermite-Gaussian(HG)轉換成高階Laguerre-Gaussian (LG)模態,而這一個外部柱狀透鏡,會將原來柱面鏡雷射腔造成的聚焦差異修正回來,而隨著行進間的轉變,我們亦將其記錄。對照1993年L. Allen等人用HG基底重組後可得LG模態,此種方式只能處理遠場轉換完成的LG卻不能處理行進間的變化過程;本文運用海更士積分和ABCD法來呈現隨行進間的模態變化,並針對柱面鏡垂直兩軸的曲率半徑不同所改寫的HG模態,能以此描述行進中的模態變化,和以HG 基底重組後所呈現的LG模態,將模擬模態的行進過程和實驗記錄對照。

    系統在裝置外加柱透鏡時,當拉大聚焦系統對雷射腔體的離焦或離軸時,會發現一些特殊的模態,非一般的LG模態,此類因為其特殊腔長下作離焦離軸所產生的模態稱為” flower-type mode”,其成因為相同能量的模態疊加而成,在本文中並對雷射腔體所呈現出的flower-type mode紀錄並對此嘗試做出數值模擬。

    We experimentally researched the astigmatic fundamental mode and high order Hermite-Gaussian mode from hemi-cylindrical laser cavity which has cylindrical mirror as front mirror. Laser light profile is changing along propagation because beam divergence are different with cylindrical mirror different radius on x and y axis. This phenomenon called astigmatism. We recorded and analyzed these laser modes.

    Another way, we set a plane-convex cylindrical lens as extra-cavity to transform high-order Hermite-Gaussian mode into high-order Laguerre-Gaussian mode because beam divergence can adjust by extra-cavity cylindrical lens. We also recorded the transform along propagation. Afterward, we followed L. Allen’s research’s concept at 1993 that they used Hermite-Gaussian mode as basis to reconstruct Laguerre-Gaussian mode. To present those mode’s numerical fitting, we combine Huygens integral and ABCD law to descript mode transform along propagation and revise the function for cylindrical mirror. Finally, we did numerical fitting to compare with experimental result.

    Specially, when we increased the pump offset or the pump size, we observed some unique modes, called “flower-type mode” We displayed these kind mode related to the coherent superposition of Laguerre-Gaussian mode.

    論文授權書i 摘要 iii Abstract iv 致謝 v 目錄 vi 圖表 vii 第1章 緒論 1 1.1 前言 1 1.2 研究動機 3 第2章 理論背景 4 2.1 雷射晶體Nd:YVO4介紹 4 2.2 柱面型共振腔 9 2.2.1 共振腔的穩定條件 9 2.2.2 柱面型共振腔的波函數 13 2.3 橫向模態與縱向模態的頻寬比 19 2.4 Hermite-Gaussian 模態的疊加 21 第3章 柱面型共振腔雷射模態實驗結果與分析 23 3.1 實驗裝置架構 23 3.2 像散的模態之近遠場變化 26 3.2.1 像散的基本模態之近遠場結果 26 3.2.2 像散的Hermite-Gaussian模態之近遠場結果 29 3.3 像散的Hermite-Gaussian模態行進理論分析 30 3.4 腔外柱狀透鏡的模態轉換 33 3.4.1 像散的基本模態之轉換 33 3.4.2 像散的Hermite-Gaussian模態之轉換 34 3.5 模態轉換之理論分析 35 3.6 柱面型簡併腔模態轉換 39 3.7 實驗結果討論 42 第4章 未來工作 43 4.1 模態轉換參數與腔長關係 43 4.2 轉換模態的干涉圖形 45 References 46

    [1] S. J. van Enk ,G. Nienhuis “Eigenfunction description of laser beams and orbital
    angular momentum of light,” Opt. Commun. 94, 147–158 (1992).

    [2] R. A. Beth, ” Mechanical Detection and Measurement of the Angular Momentum of Light,” Phys. Rev. 50, 115 (1936).

    [3] A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24, 156-159 (1970).

    [4] A. Ashkin, J. M.Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams” Nature 330, 769 - 771 (31 December 1987).

    [5] Steven M. Block, Lawrence S. B. Goldstein, Bruce J. Schnapp, ” Bead movement by single kinesin molecules studied with optical tweezers” Nature 348, 348 - 352 (22 November 1990).

    [6] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).

    [7] Eleonora Nagali, Fabio Sciarrino, Francesco De Martini, Lorenzo Marrucci, Bruno Piccirillo, Ebrahim Karimi, and Enrico Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons” Phys. Rev. Lett. 103, 013601(2009).

    [8] J. Fu, Z. Si, S. Tang, and J. Deng, “Classical simulation of quantum entanglement using optical transverse modes in multimode waveguides,” Phys. Rev. A 70(4), 042313 (2004).

    [9] N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93(5), 053601 (2004).

    [10] K. Wagner, J. Janousek, V. Delaubert, H. Zou, C. Harb, N. Treps, J. F. Morizur, P. K. Lam, and H.-A. Bachor, “Entangling the spatial properties of laser beams,” Science 321(5888), 541–543 (2008).

    [11] D. Kawase, Y. Miyamoto, M. Takeda, K. Sasaki, and S. Takeuchi, “Effect of high-dimensional entanglement of Laguerre-Gaussian modes in parametric downconversion,” J. Opt. Soc. Am. B 26(4), 797–804 (2009).

    [12] G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).

    [13] G. Nienhuis and L. Allen, “Paraxial wave optics and harmonic oscillators,” Phys. Rev. A 48(1), 656–665 (1993).

    [14] R. K. Bhaduri, Shuxi Li, K. Tanaka and J. C. Waddington, “ Quantum gaps and classical orbits in a rotating two-dimensional harmonic oscillator,” J. Phys. A: Math. Gen. 27 L553 (1994).

    [15] N.G. van Kampen, “The Expansion of the Master Equation” Adv. Chem. Phys. 34, 245 (1976)

    [16] A. E. Kaplan, I. Marzoli, W. E. Lamb, Jr., and W. P. Schleich, “Multimode interference: Highly regular pattern formation in quantum wave-packet evolution,” Phys. Rev. A 61(3), 032101 (2000).

    [17] M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).

    [18] Ching-Hsu Chen et al. , “Transverse excess noise factor and transverse mode locking in a gain-guided laser,” Optics Communications, 245 , 301 (2005)

    [19] Y. F. Chen, T. H. Lu, K. W. Su, and K. F. Huang, “Devil’s Staircase in Three-Dimensional Coherent Waves Localizedon Lissajous Parametric Surfaces” Phys. Rev. Lett. 96, 213902 (2006)

    [20] N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A 25(7), 1642–1651 (2008)

    [21] Gilad M. Lerman and Uriel Levy,” Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm” Optics letters 33 (23), 2782-2784

    [22] http://www.solgel.com/articles/Sept00/Huignard.htm

    [23] Liu Jie, Yang Jimin, and He Jingliang, “Comparison of diode - pumped Nd:YVO4、Nd: GdVO4 and Nd:YAG lasers’ characteristic” LASER JOURNAL 24. No. 5(2003)

    [24] 李季達,「我國DPSSSSL 雷射產業逐漸成形」光連:光電產業與技術情報, 25期,24-31,(2000)

    [25] 丁勝懋, 雷射工程導論(4th ed.) ,(2001)

    [26] Eksma optics, coating specifications, (2005)

    [27] http://www.u-oplaz.com/crystals/crystals20-1.htm

    [28] Peter W. Milonni, Joseph H. Eberly, “Laser Physics,” p.276, Wiley.

    [29] J. Visser and G. Nienhuis, “Orbital angular momentum of general astigmatic modes,” Phys. Rev. A 70(1), 013809 (2004).

    [30] J. A. Arnaud and H. Kogelnik, “Gaussian light beams with general astigmatism,” Appl. Opt. 8(8), 1687–1693(1969)

    [31] T. H. Lu, Y. C. Lin, Y. F. Chen, and K. F. Huang, “Three-dimensional coherent optical waves localized ontrochoidal parametric surfaces,” Phys. Rev. Lett. 101(23), 233901 (2008).

    [32] T. H. Lu, Y. C. Lin, Y. F. Chen, and K. F. Huang, “Generation of multi-axis Laguerre–Gaussian beams fromgeometric modes of a hemiconfocal cavity,” Appl. Phys. B 103(4), 991–999 (2011).

    [33] J. L. Blows and G. W. Forbes, “Mode characteristics of twisted resonators composed of two cylindrical mirrors,” Opt. Express 2(5), 184–190 (1998).

    [34] Habraken, Steven Johannes Martinus, “Light with a twist : ray aspects in singular wave and quantum optics,”p.7, Leiden Repository.

    下載圖示
    QR CODE