研究生: |
王盛弘 Sheng Hong Wang |
---|---|
論文名稱: |
彩色影像處理流程設計 The Design of Color Image Processing Pipeline |
指導教授: |
黃奇武
Huang, Chi-Wu 高文忠 Kao, Wen-Chung |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 彩色影像處理流程 、自動色階 、自動白平衡 、色彩校正 、色彩空間轉換 、色彩飽和度增強 、伽瑪校正 、色溫曲線 、色彩矩陣 、查表法 、動態範圍 、標準色卡 、點陣圖 |
英文關鍵詞: | Color Image Processing Pipeline, Auto Level, Auto White Balance, Color Correction, Color Space Transformation, Color Saturation Enhancement, Gamma Correction, Color Temperature Curve, Color Matrix, Look Up Table, Dynamic Range, Standard Color Checker, Bitmap |
論文種類: | 學術論文 |
相關次數: | 點閱:509 下載:165 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文提出一個彩色影像處理流程,將CCD或CMOS感測器上擷取到的原始資料處理為正確顏色的照片。儘管有許多個別的彩色影像處理方法已經被發表,但卻沒有優良的彩色影像處理流程被提出。在此,我們不但提出一個彩色影像處理流程,以及色彩及色階重現演算法。它為彩色影像處理系統中的理論影像科學和實際影像處理流程之間的缺口建立起橋樑。而經由實驗的結果可得知,提出的影像處理流程和新的色彩處理演算法在大部份的場景以及光源下,都可以得到不錯的結果。
This thesis presents a new color image processing pipeline (IPP) which processes the image raw data captured from CCD/CMOS sensors to the final color and tone corrected picture. Although many individual image processing steps have been well addressed, very few good image pipeline designs proposed to integrate these processing stages. In this thesis, we present a new IPP as well as several color and tone reproduction algorithms. It bridges the gap between theoretic color imaging sciences and the practical IPP implementation issues of digital imaging systems. The demonstrations by processing different scenes of pictures show that the proposed pipeline and several new color processing algorithms runs well in diversified scenes and illuminants.
[1] G. Sharma and H. J. Trussell, “Digital color imaging,” IEEE Trans. Image Processing, vol. 6, no, 7, pp. 901-932, Jul. 1997.
[2] G. Sharma, M. J. Vrhel, and H. J. Trussell, “Color imaging for multimedia,” Proceedings of the IEEE, vol. 86,no. 6, pp. 1088-1108, Jun. 1998.
[3] H. C Lee, Introduction to Color Imaging Science, Cambridge University Press, pp. 46-47, pp.388-392 and pp. 450-459, 2005.
[4] K. Illgner, H-G Gruber, P. Gelabert, J. Liang,, Y. Yoo, W. Rabadi, R. Talluri, "Programmable DSP platform for digital still cameras", in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Mar. 1999, pp. 2235-2238.
[5] C. C. Koh, Student Member, IEEE, J. Mukherjee, Member, IEEE, and S.K. Mitra, Life Fellow, IEEE, ”New Efficient Methods of Image Compression in Digital Cameras with Color Filter Array”, IEEE Trans. Consumer Electronics, vol. 49, NO. 4, pp 1448-1456, Sept. 4, 2003.
[6] H. Quinn, S. King, M. Leeser, W. Meleis, ”Runtime Assignment of Reconfigurable Hardware Components for Image Processing Pipelines”, Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03), 2003.
[7] F. Gasparini and R. Schettini, “Color balancing of digital photos using simple image statistics,” Pattern Recognition, vol. 37, no. 6, pp. 1201-1217, 2004.
[8] K. Barnard, V. Cardei, and B. Funt, “A comparison of computational color constancy algorithms-part I: methodology and experiments with synthesized data,” IEEE Trans. Image Processing, vol. 11, no. 9, pp. 972-983, Sep. 2002.
[9] K. Barnard, V. Cardei, and B. Funt, “A comparison of computational color constancy algorithms-part II: experiments with image data,” IEEE Trans. Image Processing, vol. 11, no. 9, pp. 985-996, Sep. 2002.
[10] B. Funt, K. Barnard, and L. Martin, “Is machine colour constancy good enough?” Proc. 5th European Conference Computer Vision, Freiburg, Germany, pp. 445-459, 1998.
[11] B. Funt, V.Cardei, and K. Barnard, “Learning color constancy,” Proceedings of the Fourth IS&T/SID Color Imaging Conference, pp. 58-63, 1996.
[12] G. D. Finlayson, S. D. Hordley, and P. M. Hubel, “Color by correlation: a simple, unifying framework for color constancy,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 11, pp. 1209-1221, Nov. 2001.
[13] G.D. Finlayson and S.D. Hordley, “Color constancy at a pixel,” Journal of the Opt. Soc. Am. A, vol. 18, no. 2, pp. 253-264, 2001.
[14] Edmund Y. Lam, “Combining Gray World and Retinex Theory for Automatic White Balance in Digital Photography,” IEEE, pp. 134-139, 2005.
[15] Ching-Chih Weng, Homer Chen, and Chiou-Shann Fuh, “A Novel Automatic White Balance Method For Digital Still Cameras,” Proc. IEEE ISCAS Int. Symposium on Circuits and Systems, pp. 3801-3804, 2005.
[16] Hany Farid. “Blind Inverse Gamma Correction,” IEEE Trans. Image Processing. 8. 2001.
[17] F. H. Cheng, W. - H. Hsu, and T. W. Chen, “Recovering colors in an image with chromatic illuminant,” IEEE Trans. Image Processing, vol. 7, no. 11, pp.1524-1533, Nov. 1998.
[18] Y. C. Chang and J. F. Reid, “RGB calibration for color image analysis in machine vision,” IEEE Trans. Image Processing, vol. 5, no. 10, pp. 1414-1422, Oct. 1996.
[19] M. Jackowski, A. Goshtasby, S. Bines, D. Roseman, and C. Yu, “Correcting the geometry and color of digital images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 10, pp. 1152- 1158, Oct. 1997.
[20] M. J. Vrhel and H. J. Trussell, “Color device calibration: a mathematical formulation,” IEEE Trans. Image Processing, vol. 8, no. 12, pp. 1796-1806, Dec. 1999.
[21] E. Mizutani and K. Nishio, “Multi-illuminant color reproduction for electronic cameras via CANFIS neuro-fuzzy modular network device characterization,” IEEE Trans. Neural Network, vol. 13, no. 4, pp. 1009-1022, Jul. 2002.
[22] C. Connolly and T. Fliess, “A study of efficiency and accuracy in the transformation from RGB to CIELab color space,” IEEE Trans. Image Processing, vol. 6, pp.1046–1048, July 1997.
[23] H. C. Lee, "Digital Color Image Processing Method Employing Constrained Correction of Color Reproduction Function", U.S. Patent, 4,663,663, May 5, 1987.
[24] C. S. Mccamy, H. Marcus, and J. G. Davidson, “A color-rendition chart.” J. Applied Photographic Eng., vol. 2,no. 3, pp. 95-99, 1976.