簡易檢索 / 詳目顯示

研究生: 李佳任
Jia-Ren Lee
論文名稱: 砷化鎵∕砷化銦 量子點的電-光性質
Electro-Optical Properties of InAs/GaAs Quantum Dots
指導教授: 陸健榮
Lu, Chien-Rong
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 89
中文關鍵詞: 砷化銦/砷化鎵量子點光調制反射光激螢光
英文關鍵詞: InAs/GaAs, quantum dots (QD), photoreflectance (PR), photoluminescence (PL)
論文種類: 學術論文
相關次數: 點閱:296下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
我們分別以光調制反射實驗(PR)和光激螢光實驗(PL)來研究由有機金屬化學氣相沈積法(MOCVD)所長成的 砷化銦∕砷化鎵 量子點系統結構在不同溫度下其電-光性質的變化。由於兩種實驗的機制不同,譜線強調的部分也就不一樣,將兩者實驗結果互相比較對照,對譜線的解釋有莫大的助益,並得到完整可靠的光譜訊息。
經由我們對PR的實驗結果以羅倫茲譜形的擬合與分析,發現在砷化鎵能隙以下的一組譜形結構是來自於厚度為2ML的砷化銦wetting layer(WL)的貢獻,並且觀測到砷化銦WL的光譜強度相對於砷化鎵能隙的光譜強度有越往低溫越大的現象。
經由我們對PL實驗結果以高斯曲線的擬合與分析,發現量子點相鄰能階有幾乎相同的能量差,並根據理論模型計算結果推測量子點系統受到來自於樣品內部電場的史塔克效應(Stark effect)影響使得實驗能階譜峰能量位置因為位能井的傾斜而有更大的紅移幅度。我們發現PL能階譜形的寬化參數從低溫開始隨著升溫而增加,但在200K時卻有明顯的窄化現象,接著又隨著升溫而寬化,並不像一般在量子井或塊材中所觀察到的展寬隨著溫度持續增加。我們發現隨著溫度上升,各能階的螢光積分強度皆隨著升溫而減小,基態與其他能階的螢光強度比值在200K時較其他溫度時為大。
根據PR與PL實驗分別只觀察到來自於WL與量子點能階躍遷訊號的比較對照下,我們認為來自於樣品結構中的高摻雜及樣品之表面態捕獲電子使得費米能階介於量子點的最高能階與WL的最低能階之間,以致於兩種實驗機制所對應的訊號來源有所區別。

ABSTRACT
The electro-optical properties of InAs/GaAs Quantum Dots have been studied by comparing the photoreflectance and photoluminescence spectra at various temperatures. The samples used in our experiments were grown by Metal-Organic Chemical Vapor Deposition on the n+ dopped GaAs substrates.
The photoreflectance spectral features below the energy gap of GaAs originate from the InAs wetting layer , and the relative spectral intensity between the InAs wetting layer and the GaAs energy gap increases with the decreasing of temperature .
The photoluminescence spectral profiles consist of contributions from the equal spacing energy levels of the InAs quantum dots, and agree with the prediction of the disc-shaped quantum dots theoretical calculations. The red shifts of the quantum dots energy levels with the increasing temperature may be influenced by the internal electric fields induced Stark effect.
Since the quantum dots transitions were observed in the photoluminescence spectra and the wetting layer transitions were observed in the photoreflectance spectra, we propose that the Fermi level of the system is located between the highest energy level of the wetting layer and the lowest energy level of the quantum dots.

目錄 摘要………………………………………………………………….. 目錄………………………………………………………………..… 圖目錄……………………………………………………………….. 第一章 量子點系統簡介………………………………………….. 1 第二章 光調制與螢光光譜原理 2-1 電子躍遷理論……………………………………………... 6 2-2 光學函數與電子躍遷的關係……………………………. 9 2-3 調制光譜的基本原理……………………………………. 15 2-4 電場調制…………………………………………………. 19 2-5 弱電場調制………………………………………………. 22 2-6 低維度半導體結構的調制光譜與結果…………………. 24 2-7 光調制反射光譜的機制…………………………………. 25 2-8 光激螢光的機制…………………………………………. 26 第三章 實驗與結果 3-1 樣品結構…………………………………………………. 29 3-2 光調制實驗………………………………………………. 30 3-3 光調制實驗的光譜結果…………………………………. 32 3-4 光激螢光實驗……………………………………………. 33 3-5 光激螢光實驗的光譜結果………………………………. 34 第四章 光調制光譜分析 4-1 晶格應變對能隙的影響…………………………………. 35 4-2 受應力之量子井能帶結構分析…………………………. 38 4-3 量子井能階躍遷的計算…………………………………. 41 4-4 光調制實驗譜圖的擬合與分析…………………………. 43 第五章 光激螢光光譜分析 5-1 量子點能階躍遷的計算與分析…………………………. 45 5-2 量子點能階譜峰位置隨溫度的變化……………………. 47 5-3 量子點能階譜峰寬化參數隨溫度的變化………………. 50 第六章 結論與展望……………………………………………… 52 圖(1-1)~圖(5-3)………………………………………………… 54~84 附錄:量子井求解束縛態Matlab程式…………………………. 85 參考文獻…………………………………………………………… 86

參考文獻
1.M. Grundmann, J. Christen, N. N. Ledentsov, J. Bohrer and D. Bimberg , Phy. Rev. Lett, 74, 4043 (1995).
2. M. Grundmann, D. Bimberg, Jpn. J. Appl. Phys. 36, 4181 (1997).
3. R. Heitz, M. Grundmann, N. N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, V. M. Ustinov,A.Yu. Egorov, A. E. Zhukov, P. S. Kop'ev and Zh. I. Alferov, "Multiphonon
relaxation processes in self-organized InAs/GaAs quantum dots," Appl. Phys. Lett, vol.68, pp. 361-363, 1996.
4. N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop'ev and Zh. I. Alferov," Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers," Appl. Phys. Lett, vol. 69, pp. 1226-1228, 1996.
5. N. N. Ledentsov, I. L. Krestnikov, M. V. Maximov, S. V. Ivanov, C. M. Sotomayor Torres, "Response to ``Comment on `Ground state exciton lasing in CdSe submonolayers inserted in a ZnSe matrix' '' [Appl. Phys. Lett. 70, 2765 (1997)],"Appl. Phys. Lett. 70, pp. 2766-2767, 1997.
6. Y. Arakawa and K. Sakaki, Appl. Phys. Lett. 40, pp. 939-941, 1982.
7. Q. Xie, A. Kalburge, P. Chen, and A. Madhukar, "Observation of lasing from vertically self-organized InAs three-dimensional island quantum boxes on GaAs (001)," IEEE Photonics Technol. Lett, vol. 8, pp. 965-967, 1996.
8. N. Yokoyama, S. Muto, K. Imamura, M. Takatsu, T. Mori, Y. Sugiyama, Y. Sakuma, H. Nakao, and T. Adachihara, Solid-State Electron. 40, 505 (1996).
9. J. J. Finley, M. Skalitz, M. Arzberger, A. Zrenner, G. Bohm, and G. Abstreter, "Mass transport equations unifying descriptions of isothermal diffusion, thermomigration, segregation, and position-dependent diffusivity," Appl. Phys. Lett, vol. 73, pp. 2678-2680, 1998.
10. G. Yusa and H. Sakaki, "Trapping of photogenerated carriers by InAs quantum
dots and persistent photoconductivity in novel GaAs/n-AlGaAs field-effect transistor structures," Appl. Phys. Lett, vol. 70, pp. 345-347, 1997.
11. M. Arita, A. Avramescu, K. Uesugi, I. Suemune, T. Numai, H. Machida, and N. Shimoyama, "Self-organized CdSe quantum dots on (100)ZnSe/GaAs surfaces grown by metalorganic molecular beam epitaxy", Jpn. J. Appl. Phys. 36, 4097 (1997). 
12. D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, "Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces", Appl. Phys. Lett. 63, 3203 (1993).
13. J. -Y. Marzin, J. -M. Gerard, A. Izrael, and D. Barrier, "Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs", Phys. Rev. Lett. 73, 716 (1994).
14. J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre, and O. Vatel,
" Self-organized growth of regular nanometer-scale InAs dots on GaAs" , Appl. Phys. Lett. 64, 196 (1994).
15. N. Carlsson, K. Georgsson, L. Montelius, L. Samuelson, W. Seifert, and R. Wallenberg, "Improved size homogeneity of InP-on-GaInP Stranski-Krastanow islands by growth on a thin cap interface layer", J. Cryst. Growth 156, 23 (1995).
16. M. E. Pistol, N. Carlsson, C. Persson, W. Seifert, and L. Samuelson, " Observation of strain effects in semiconductor dots depending on cap layer thickness", Appl. Phys. Lett. 67, 1438 (1995).
17. S. Tanaka, S. Iwai, and Y. Aoyagi, "Self-assembling GaN quantum dots on
AlxGa1-xN surfaces using a surfactant", Appl. Phys. Lett. 69, 4096 (1996).
18. M. Tabuchi, S. Noda, and A. Sasaki, in Science and Technology of Mesoscopic Structures, edited by S. Namba, C. Hamaguchi, and T. Ando (Springer, Tokyo 1992), p. 379.
19. V. Turck, F. Heinrichsdorff, M. Veit, R. Heitz, M. Grundmann, A. Krost, and D. Bimberg, "Correlation of InGaAs/GaAs quantum dot and wetting layer formation", Appli. Surf. Sci. 123/124, 352 (1998).
20. D. L. Huffaker, and D. G. Deppe, "Electroluminescence efficiency of 1.3 μm wavelength InGaAs/GaAs quantum dots", Appl. Phys. Lett. 73, 520 (1998).
21. N. N. Ledentsov, M. Grundmann, N. Kirstaedter, O. Schmidt , R. Heitz, J. Bohrer, D. Bimberg, V. M. Ustinov, V. A. Shchukin, A. Yu. Egorov, A. E. Zhukov, S. Zaitsev, P. S. Kop'ev, Zh. I. Alferov, S. S. Ruvimov, A. O. Kosogov, P. Werner, U. Gosele and J. Heydenreich, "Ordered arrays of Quantum Dots : Formation, electronic spectra, relaxation phenomena, lasing," Solid State. Electronic, vol 40, pp. 785-789, 1996.
22. G. Park. D. L. Huffaker, Z. Zou, O. B. Shchekin and D. Deppe, "Temperature Dependence of Lasing Characteristics for Long-Wavelengh (1.3 μm ) GaAs-Based Quantum-Dot Lasers," IEEE Photonicss Technology Letters, vol. 11, pp 301-303, 1999.
23. A. O. Kosogav, P. Werner, U. Gosele, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E.Zhukov, P. S. Kop'ev, and N. A. Bert, Appl. Phys. Lett., 69(20), 1996, p.3072.
24. Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, Phys. Rev. Lett., 75(13), 1995, p.2542.
25. G. S. Solomon, J. A. Trezza, A. F. Marshall and, J. S. Harris, Jr., Phys. Rev. Lett., 76(6) , p.952,1996.
26. M. K. Zundel, P. Specht, K. Eberl, N. Y. Jin-Phillipp, and F. Phillipp, Appl. Phys. Lett., 71(20), 1997, p.2972.
27. Wang Y Herron N., J. Phys. Chem. 53 , 465(1991)
28. Brus L E , Appl. Phys. A, 53, 465(1991)
29. M. Kitamura, M. Nishioka, J. Oshinowo, and Y. Arakawa, Appl. Phys. Lett., 66, 3663, 1995.
30. R. Notzel, J. Temmyo, T. Tamamura, T. Fukui, and H. Hasegawa, Jpn. J. Appl. Phys., 34, L872, 1995.
31. D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kop'ev, Z. I. Alferov, Thin Solid Films, 267, 32, 1995.
32.Goldstein L,Glas F, Marzin J. Y, Charasse M. N. and Le Roux G.,Appl. Phys. Lett. 47,1099(1985)
33. N. N. Ledentsov, P. D. Wang, C. M. Sotomayor Torres, A. Yu. Egorov, M. V. Maximov, V. M. Ustinov, A. E. Zhukov and P. S. Kop'ev, Phys. Rev. B, 50, 12171 (1994)
34. G. E. Cirlin, G. M. Guryanov, A. O. Golubok, S. Ya. Tipissev, N. N. Ledentsov, P. S. Kop'ev, M. Grundmann and D. Bimberg, Appl. Phys. Lett., 67, 97 (1995)
35. N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop'ev, and Zh. I. Alferov, " Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers", Appl. Phys. Lett. 69, 1226 (1996).
36. J. A. Barker and E. P. O'Reilly, Phys. Rev. B, 61, 13840 (2000)
37. D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbarrs and P. M. Petroff, Appl. Phys. Lett., 63, 3203 (1993)
38. D. Leonard, K. Pond and P. M. Petroff, Phys. Rev. B, 50, 11687 (1994)
39. A. Wojs, P. Hawrylak, S. Fafard and L. Jacak, Phys. Rev. B, 54, 5604 (1996)
40. J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre and O. Vatel, Appl. Phys. Lett., 64, 196 (1994)
41. J. Y. Marzin and G. Bastard, Solid State Commun., 92,437 (1994)
42. S. Ruvimov, P. Werner, K. Scheerschmidt, J. Heydenreich, U. Richter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, P. S. Kop'ev and Zh. I. Alferov, Phys. Rev. B, 51, 14766 (1995)
43. M. Grundmann, O. Stier and D. Bimgerg, Phys. Rev. B, 52, 11969 (1995)
44.S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak and S. Charbonneau, Phys. Rev. B, 54(16),1996,p11548.
45.K. Mukai, N. Ohtsuka, H. Shoji and M. Sugawara, Phys. Rev. B,54(8), 1996, R5243.
46. K. Mukai, N. Ohtsuka, H. Shoji and M. Sugawara, Appl. Phys. Lett, 68(21), 1996,p3013.
47.M. Grundmann, D. Bimberg, Phys. Rev. B, 55(15), 1997, p9740.
48.Claude Cohen-Tannoudji, Bernard Diu & Franck Laloeë, “Quantum Mechanics”, Ch. 13.
49.‘Optical Properties of Solids’, edited by F.Abeles,chap.2.
50.N. Peyghambarian , S. W. Koch and A. Mysyrowicz , ‘Introduction to Semiconductor Optics’, chap.Ⅵ
51. B. O. Seraphin,”The effect of an Electric Field on Reflectivity Hulin,
Academic, Dunod, Paris (1964).
52. D. Huang, G. Ji, U. K. Reddy, H. Morkoc, F. Xiong and T. A.Tombrello, “Photoreflectance, Absorption, and Nuclear Resonance Reaction Studies of AlxGa1-xAs Grown by Molecular-Beam Epitaxy”,J. Appl. Phys., Vol. 63,
pp. 5447-5443 (1998).
53. Alok K. Berry, D. K Gaskill and G. T. Stauf, “Photoreflectance of semi-insulating
InP: Resistivity effects on the exction phase”, Appl. Phys. Lett. Vol. 58, pp2824-
2826 (1991).
54. O. J. Glembocki, N. Bottka and J. E. Fuxrneaux, “Effects if Impurity Transition on Electroreflectance in Thin Epitaxial GaAs and Ga1-xAlxAs/GaAs layers”, J. Appl. Phys., Vol. 57, pp. 432-437 (1985).
55. F. H. Pollak, O. J. Glembocki, Spectroscopi c Characterization Techniques for Semiconductor Technology III, Vol.946. (SPIE, California, 1988), p.2-35.
56. B. O. Seraphin and N. Bottka, Phys. Rev. 145, 628 (1966)
57. Landau and Lifshitz , “Quantum Mechanics”, 2nded.,Mathematical Appendices.
58. D. E. Aspnes,Phys. Rev.147,554(1966)
59. K. Suzuki, and J. C. Hensel, Bull. Am. Phys. Soc. 14, 113 (1969).
60. T. S. Moss, “Handbook on Semiconductors”, North Holland, N. Y. ,Vol. 2.
p109(1980)
61. M. Cardona, “Modulation Spectroscopy”, Academic, N. Y.(1969).
62. B. V. Shanabrook, O. J. Glembocki & W. T. Beard, Phys. Rev. B35, 2540(1987)
63. D. G. Seiler and C. L. Littler “The Spectroscopy of Semiconductors”, Vol.2, p255.
64.F. H. Pollak and M. Cardona, “piezo-Electroreflectance in Ge, GaAs, and Si”, phys. Rev. 172,816(1968).
65.Jasprit Singh, “Physics of Semiconductors and Their Heterostructures”,chap.7.
66.Gerald Bastard,``Wave Mechanics Applied to Semiconductor Heterostructures'', chap. II.
67.G. Ji, D. Huang, U. K. Reddy, T. S. Henderson, R. Houdre, and H.Morkoc, “Optical investigation of highly strained InGaAs-GaAs multiple quantum wells”, J. Appl. Phys. 62, 3366(1987).
68.C. D. Thurmond,J. Electrochem. Soc.122,1133(1975)
69.Cusack, M. A.,Briddon,P. R.,and Jaros,M.,phy. Rev. B, 56, 4047(1997)
70.B. V. Shanabrook,O. J. Glembocki,D. A.Broido,W. I. Wang,Phys. Rev.
B,39,3411(1989)
71.S.Adachi, J. Appl. Phys.53(12),8775(1982)
72.Landolt-Bornstein, New Series, Group Ⅲ, edited by K. H. Hellwege, Vol.179.
73.Y. S. Huang,H. Qiang,F. H. Pollak,G. D. Pettit,P. D. Kirchner,J. M. Woodall,H.
Strgier,L. B. Sorensen,J. Appl. Phys.70(12),7537(1991)
74.S. Adachi, J. Appl. Phys. 58. R1(1985)
75.M. Moran, K. J. Moore, P. Dawson, J. Appl. Phys. 84(6), 3349(1998).
76.B. V. Shanabrook,O. J. Glembocki,D. A. Broido,W. I.Wang, Phys.Rev. B39, 3411
(1989)
77.J. S. Wang, J. F. Chen, “Electrical and Optical studies of InGaAs/GaAs quantum
dots and GaAsN/GaAs quantum well”, Department of Electrophysics National Chiao Tung University.
78.S. P. Kowalczyk, W. J. Schaffer, E. A. Kraut, and R. W. Grant, “Determination
of the InAs-GaAs(100) heterojunction band discontinuities by x-ray photoelectron spectroscopy (XPS)”, J. Vac. Sci. Technol. 20, 705(1982).
79.T. G. Andersson, Z. G. Chen, V. D. Kulakovskii, A. Uddin, and J. T. Vallin,
“photoluminescence and photoconductivity measurements on band-edge offsets
in strained molecular-beam-epitaxy-grown InxGa1-xAs/GaAs quantum wells”,
phys. Rev. b37, 4032(1988).
80.R. Colombelli, V. Piazza, A. Badolato, M.Lazzarino, and F. Beltram, “Conduction-
band offset of single InAs monolayers on GaAs”,Appl. Phys. Lett. 76,
1146 (2000)

QR CODE