簡易檢索 / 詳目顯示

研究生: 陳麒安
CHEN, Chi-An
論文名稱: 適應性差分演化演算法之軟體框架設計
ADEF: A Software Framework for Adaptive Differential Evolution
指導教授: 蔣宗哲
Chiang, Tsung-Che
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 54
中文關鍵詞: 差分演化演算法適應性參數控制軟體框架
DOI URL: https://doi.org/10.6345/NTNU202205263
論文種類: 學術論文
相關次數: 點閱:176下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 差分演化演算法在解連續型實係數的問題上,有不錯的能力,各式各樣的突變策略以及不同的參數值 F 與 CR,會改變差分演化演算法的效能。
    參數有多種產生的方法,可能是固定的,也可能是動態的,並且希望透過一個軟體方便地控制它們,但是,目前並沒有一個軟體能讓想要研究它們的使用者操作,因此,本論文開發出支援多種參數控制的軟體框架,並且探討實作適應性差分演化演算法之軟體框架需要考慮的設計議題以及其解決辦法。
    本論文提出的軟體框架支援數種適應性差分演化演算法,能夠自由修改參數、彈性更換參數控制機制,以及自動分析實驗結果,可以大幅減少使用者撰寫程式的時間,增進研究效率。

    附圖目錄 vi 附表目錄 vii 1 緒論 1 1.1 研究主題與動機..............................1 1.2 研究背景..................................2 1.2.1 差分演化演算法..........................2 1.2.2 啟發式演算法的軟體框架....................3 1.3 貢獻.....................................4 1.4 本文架構..................................5 2 文獻探討 6 2.1 參數調整機制...............................6 2.2 適應性差分演化演算法..........................7 2.3 多用途的軟體框架.............................13 3 適應性差分演化演算法之軟體框架設計 17 3.1 設計理念..................................17 3.2 架構設計..................................19 3.2.1 UML說明.............................19 3.2.2 主架構設計............................19 3.2.3 原型類別..............................20 3.2.4 演化流程..............................22 3.3 參數控制架構...............................23 3.3.1 ControlMechanism........................23 3.3.2 ControlFunction.........................28 3.4 實作細節..................................29 3.4.1 ControlFunction類別......................29 3.4.2 ControlMechanism類別.....................32 4 實驗 35 4.1 實作範例..................................35 4.1.1 SaDE................................35 4.1.2 NSDE................................38 4.2 參數設定..................................39 4.3 實驗結果..................................40 4.4 彈性更換參數控制機制..........................45 4.4.1 SaNSDE..............................45 4.4.2 新實驗...............................45 5 結論與未來展望 50 參考文獻 51

    [1] R. Storn and K. Price, “Differential evolution--a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol.11, no. 4, pp. 341–359, 1997.
    [2] J. A. Parejo, A. Ruiz-Cortés, S. Lozano, and P. Fernandez, “Metaheuristic optimization frameworks: a survey and benchmarking,” Soft Computing, vol. 16, no.3, pp. 527–561, 2012.
    [3] S. Das and P. N. Suganthan, “Differential evolution: a survey of the state-of-theart,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, pp. 4–31, 2011.
    [4] J. L. Ribeiro Filho, P. C. Treleaven, and C. Alippi, “Genetic-algorithm programming environments,” Computer, vol. 27, no. 6, pp. 28–43, 1994.
    [5] T.-C. Chiang, C.-N. Chen, and Y.-C. Lin, “Parameter control mechanisms in differential evolution: a tutorial review and taxonomy,” in IEEE Symposium on Differential Evolution (SDE), IEEE, 2013, pp. 1–8.
    [6] M. M. Ali and A. Törn, “Population set-based global optimization algorithms: some modifications and numerical studies,” Computers & Operations Research, vol. 31, no. 10, pp. 1703–1725, 2004.
    [7] Z. Yang, X. Yao, and J. He, “Making a difference to differential evolution,” Advances in Metaheuristics for Hard Optimization, pp. 397–414, 2008.
    [8] A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution algorithm for numerical optimization,” in IEEE Congress on Evolutionary Computation, IEEE, vol. 2, 2005, pp. 1785–1791.
    [9] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution algorithm with strategy adaptation for global numerical optimization,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 2, pp. 398–417, 2009.
    [10] Z. Yang, K. Tang, and X. Yao, “Self-adaptive differential evolution with neighborhood search,” in IEEE Congress on Evolutionary Computation, IEEE, 2008, pp. 1110–1116.
    [11] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006.
    [12] L. Jia, W. Gong, and H. Wu, “An improved self-adaptive control parameter of differential evolution for global optimization,” Computational Intelligence and Intelligent Systems, pp. 215–224, 2009.
    [13] M. G. Omran, A. Salman, and A. P. Engelbrecht, “Self-adaptive differential evolution,” Computational Intelligence and Security, pp. 192–199, 2005.
    [14] S. Luke et al., ECJ: a Java-based evolutionary computation research system. [Online]. Available: http://cs.gmu.edu/~eclab/projects/ecj/.
    [15] M. Keijzer, J. J. Merelo, G. Romero, and M. Schoenauer, “Evolving Objects: a general purpose evolutionary computation library,” Artificial Evolution, vol. 2310, pp. 829–888, 2002. [Online]. Available: http://www.lri.fr/~marc/EO/EOEA01.ps.gz.
    [16] M. Kronfeld, H. Planatscher, and A. Zell, “The EvA2 optimization framework,” in Learning and Intelligent Optimization, Springer, 2010, pp. 247–250.
    [17] S. Wagner et al., “Architecture and design of the heuristiclab optimization environment,” in Advanced Methods and Applications in Computational Intelligence, ser. Topics in Intelligent Engineering and Informatics, R. Klempous, J. Nikodem, W. Jacak, and Z. Chaczko, Eds., vol. 6, Springer International Publishing, 2014, pp. 197–261. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-01436-4_10.
    [18] S. Ventura, C. Romero, A. Zafra, J. A. Delgado, and C. Hervás, “JCLEC: a Java framework for evolutionary computation,” Soft Computing, vol. 12, no. 4, pp. 381–392, 2008.
    [19] J. J. Durillo and A. J. Nebro, “jMetal: a Java framework for multi-objective optimization,” Advances in Engineering Software, vol. 42, pp. 760–771, 2011. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0965997811001219.
    [20] J. Durillo, A. Nebro, and E. Alba, “The jMetal framework for multi-objective optimization: design and architecture,” in IEEE Congress on Evolutionary Computation, Barcelona, Spain, Jul. 2010, pp. 4138–4325.
    [21] J. Brownlee, “OAT: the optimization algorithm toolkit,” Complex Intelligent Systems Laboratory (CIS), Centre for Information Technology Research (CITR), Swinburne University of Technology, Tech. Rep., 2007.
    [22] C. Gagné and M. Parizeau, “Genericity in evolutionary computation software tools: principles and case-study,” International Journal on Artificial Intelligence Tools, vol. 15, no. 2, pp. 173–194, 2006.
    [23] M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich, “Opt4J - A Modular Framework for Meta-heuristic Optimization,” in Proceedings of the Genetic and Evolutionary Computing Conference (GECCO), Dublin, Ireland, Jul. 12–16, 2011, pp. 1723–1730.
    [24] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, “PISA --- a platform and programming language independent interface for search algorithms,” in Evolutionary Multi-Criterion Optimization (EMO 2003), C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, Eds., ser. Lecture Notes in Computer Science, Berlin: Springer, 2003, pp. 494–508.
    [25] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82–102, 1999.

    下載圖示
    QR CODE