簡易檢索 / 詳目顯示

研究生: 劉書豪
Liu, Shu-Hao
論文名稱: 坡莫合金次微米圓點陣列之鐵磁共振溫度相依研究
Investigation of Temperature Dependent Ferromagnetic Resonance in Arrays of Submicron Permalloy Dots
指導教授: 江佩勳
Jiang, Pei-hsun
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 59
中文關鍵詞: 鐵磁共振磁振子晶格
DOI URL: http://doi.org/10.6345/NTNU202000449
論文種類: 學術論文
相關次數: 點閱:168下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

常見的鐵磁共振實驗通常採用薄膜結構的鐵磁性材料,而週期性結構的鐵磁性材料在鐵磁共振實驗中有其它的吸收峰值,因此我們製作了四種樣品,其中包含一種薄膜結構、三種陣列結構,比較其實驗差異。
  將每一個樣品降溫至1.5 K,並且在不同溫度下量測微波訊號與掃磁場的關係,推算出四個主要的參數:α Gilbert阻尼參數、∆H0不均勻線寬、Ms飽和磁化、Hk異向性磁場,即可歸納出每個參數與溫度的關係。
  圓點的直徑與間距會影響磁化動力學,導致進動循環的時間有差異。藉由實驗結果可以評論,選擇不同規格的樣品需考量能量上的損耗或是微波訊號上的雜訊。

摘要 i 第一章 研究目標 1 1.1 簡介 1 1.2 進動阻尼係數 2 1.3 週期性結構的鐵磁性材料 4 1.4 低溫物理 6 1.5 自旋波 6 1.5.1 向前體積靜磁自旋波模式 7 1.5.2 向後體積靜磁自旋波模式 8 1.5.3 靜磁平面自旋波模式 10 1.6 磁振子晶格的額外吸收峰值 11 1.7 阻尼值與溫度的相依性 12 第二章 磁化的基礎理論 14 2.1 磁性材料 14 2.1.1 反磁性 14 2.1.2 順磁性 14 2.1.3 鐵磁性 15 2.2 磁域 15 2.3 磁異向性 17 2.4 磁矩與角動量 18 2.5 自旋電子的進動頻率 20 2.6 鐵磁共振 21 2.6.1 Landau-Lifshitz-Gilbert equation 21 2.6.2 微波吸收峰值的半高寬 22 2.6.3 共振頻率 23 第三章 實驗儀器介紹與樣品製作流程 25 3.1 共平面波導 25 3.2 電子束微影 26 3.2.1 繪圖 26 3.2.2 旋轉塗佈 27 3.2.3 掃描電子顯微鏡 28 3.2.4 曝光參數計算 31 3.2.5 曝光 34 3.2.6 顯影 34 3.2.7 蒸鍍 35 3.2.8 舉離 35 3.3 電子束蒸鍍 36 3.4 致冷機 38 3.5 向量網路分析儀 40 第四章 實驗結果與討論 41 4.1 FMR訊號之量測 41 4.2 阻尼值與不均勻線寬的量測 42 4.3 阻尼值與溫度的關係 44 4.4 不均勻線寬與溫度的關係 45 4.5 飽和磁化與異向性磁場的量測 45 4.6 飽和磁化與溫度的關係 46 4.7 異向性磁場與溫度的關係 47 4.8 未來展望 48 4.8.1 額外的吸收峰值 48 4.8.2 產生不均勻線寬的其它原因 50 4.8.3 重新設計CPW 52 4.9 結論 53 參考文獻 54

[1] J. H. E. Griffiths, Anomalous High-frequency Resistance of Ferromagnetic Metals. Nature 158, 670–671 (1946).
[2] B. Heinrich, J. A. C. Bland, Ultrathin Magnetic Structures II: Measurement Techniques and Novel Magnetic Properties. Springer, Berlin (2005).
[3] S. Wang, A. Taratorin, Magnetic Information Storage Technology. Academic Press, London (1999).
[4] M. Henzler, Atomic Steps on Single Crystals: Experimental Methods and Properties. Appl. Phys. 9, 11–17 (1976).
[5] J.-C. Harmand, G. Patriarche, F. Glas, F. Panciera, I. Florea, J.-L. Maurice, L. Travers, Y. Ollivier, Atomic Step Flow on a Nanofacet. Phys. Rev. Lett. 121, 166101 (2018).
[6] C. Kittel, Introduction to Solid State Physics, 8th Edition. Wiley, New York (2005).
[7] I. Žutić, J. Fabian, S. Das Sarma, Spintronics: Fundamentals and Applications. Rev. Mod. Phys. 76, 323 (2004).
[8] Y. Zhao, Q. Song, S.-H. Yang, T. Su, W. Yuan, S. S. P. Parkin, J. Shi, Experimental Investigation of Temperature-Dependent Gilbert Damping in Permalloy Thin Films. Sci. Rep. 6, 22890 (2016).
[9] M. Oogane, T. Kubota, H. Naganuma, Y. Ando, Magnetic Damping Constant in Co-Based Full Heusler Alloy Epitaxial Films. J. Phys. D: Appl. Phys. 48, 164012 (2015).
[10] I. Purnama, J. Moon, C. You, Eigen Damping Constant of Spin Waves in Ferromagnetic Nanostructure. Sci. Rep. 9, 13226 (2019).
[11] S. Azzawi, A. T. Hindmarch, D. Atkinson, Magnetic Damping Phenomena in Ferromagnetic Thin-Films and Multilayers. J. Phys. D: Appl. Phys. 50, 473001 (2017).
[12] B. Lenk, H. Ulrichs, F. Garbs, M. Münzenberg, The Building Blocks of Magnonics. Phys. Rep. 507, 107-136 (2011).
[13] S. O. Demokritov, A. N. Slavin, Magnonics: From Fundamental to Applications. Topics in Appl. Phys. 125, Springer, Berlin (2013).
[14] C. Elachi, Waves in Active and Passive Periodic Structures: A Review. Proc. IEEE 64, 1666-1698 (1976).
[15] S. Neusser, D. Grundler, Magnonics: Spin Waves on the Nanoscale. Adv. Mater. 21, 2927 (2009).
[16] K. Y. Guslienko, X. F. Han, D. J. Keavney, R. Divan, S. D. Bader, Magnetic Vortex Core Dynamics in Cylindrical Ferromagnetic Dots. Phys. Rev. Lett. 96, 067205 (2006).
[17] I. Neudecker, K. Perzlmaier, F. Hoffmann, G. Woltersdorf, M. Buess, D. Weiss, C. H. Back, Modal Spectrum of Permalloy Disks Excited by In-Plane Magnetic Fields. Phys. Rev. B 73, 134426 (2006).
[18] A. Vogel, A. Drews, T. Kamionka, M. Bolte, G. Meier, Influence of Dipolar Interaction on Vortex Dynamics in Arrays of Ferromagnetic Disks. Phys. Rev. Lett. 105, 037201 (2010).
[19] J. M. Shaw, T. J. Silva, M. L. Schneider, R. D. McMichael, Spin Dynamics and Mode Structure in Nanomagnet Arrays: Effects of Size and Thickness on Linewidth and Damping. Phys. Rev. B 79, 184404 (2009).
[20] H. T. Nembach, J. M. Shaw, T. J. Silva, W. L. Johnson, S. A. Kim, R. D. McMichael, P. Kabos, Effects of Shape Distortions and Imperfections on Mode Frequencies and Collective Linewidths in Nanomagnets. Phys. Rev. B 83, 094427 (2011).
[21] F. Guo, L. M. Belova, R. D. McMichael, Spectroscopy and Imaging of Edge Modes in Permalloy Nanodisks. Phys. Rev. Lett. 110, 017601 (2013).
[22] R. W. Damon, H. Van De Vaart, Propagation of Magnetostatic Spin Waves at Microwave Frequencies in a Normally‐Magnetized Disk. J. Appl. Phys. 36, 3453 (1965).
[23] B. A. Kalinikos, Excitation of Propagating Spin Waves in Ferromagnetic Films. IEE Proc. H - Microw. Opt. Antennas 127, 4 (1980).
[24] D. D. Stancil, Theory of Magnetostatic Waves, Springer, New York (1993).
[25] B. A. Kalinikos, A. N. Slavin, Theory of Dipole-Exchange Spin Wave Spectrum for Ferromagnetic Films with Mixed Exchange Boundary Conditions. J. Phys. C: Solid State Phys. 19, 7013 (1986).
[26] R. W. Damon, J. R. Eshbach, Magnetostatic Modes of a Ferromagnet Slab. J. Phys. Chem. Solids 19, 308 (1961).
[27] D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics Extended, 10th Edition. Wiley, New York (2014).
[28] J.H. Van Vleck, On the Anisotropy of Cubic Ferromagnetic Crystals. Phys. Rev. 52, 1178 (1937).
[29] J. Stöhr, H. C. Siegmann, Magnetism From Fundamentals to Nanoscale Dynamics. Springer, Berlin (2006).
[30] J. M. Luttinger, C. Kittel, A Note on the Quantum Theory of Ferromagnetic Resonance. Helv. Phys. Acta. 21, 480 (1948).
[31] L. D. Landau, E. Lifshitz, On the Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Bodies. Phys. Z. Sow. 8, 153–169 (1935).
[32] O. Yaln, Ferromagnetic Resonance Theory and Applications. InTech (2013).
[33] T. Taniguchi, H. Imamura, Spin Pumping in Ferromagnetic Multiplayers. Mod. Phys. Lett. B 22(30), 2909-2929 (2008).
[34] T. L. Gilbert, A Lagrangian Formulation of the Gyromagnetic Equation of the Magnetization Field. Phys. Rev. 100, 1243 (1955).
[35] T. L. Gilbert, A Phenomenological Theory of Damping in Ferromagnetic Materials. IEEE Trans. Magn. 40, 3443 (2004).
[36] A. Brataas, Y. Tserkovnyak, G. W. Bauer, Scattering Theory of Gilbert Damping. Phys. Rev. Lett. 101, 037208 (2008).
[37] Z. Celinski, B. Heinrich, Ferromagnetic Resonance Linewidth of Fe Ultrathin Films Grown on a Bcc Cu Substrate. J. Appl. Phys. 70, 5935–5937 (1991).
[38] B. Heinrich, J. A. C. Bland, Ultrathin Magnetic Structures II: Ferromagnetic Rresonance in Ultrathin Film Structures. Springer, Berlin (2005).
[39] B. Heinrich, J. F. Cochran, FMR Linebroadening in Metals Due to Two‐Magnon Scattering. J. Appl. Phys. 57, 3690 (1985).
[40] T. D. Rossing, Resonance Linewidth and Anisotropy Variation in Thin Films. J. Appl. Phys. 34, 995 (1963).
[41] D. D. Stancil, A. Prabhakar, Spin Waves: Theory and Application. Springer, Berlin (2009).
[42] B. Heinrich, J. F. Cochran, Ultrathin Metallic Magnetic Films: Magnetic Anisotropies and Exchange Interactions. Adv. Phys. 42, 523-639 (1993).
[43] H. Suhl, Theory of the Magnetic Damping Constant. IEEE Trans. Magn. 34, 1834-1838 (1998).
[44] J.-M. Beaujour, D. Ravelosona, I. Tudosa, E. E. Fullerton, A. D. Kent, Ferromagnetic Resonance Linewidth in Ultrathin Films with Perpendicular Magnetic Anisotropy. Phys. Rev. B 80, 180415 (2009).
[45] S. S. Kalarickal, P. Krivosik, M. Wu, C. E. Patton, Ferromagnetic Resonance Linewidth in Metallic Thin Films: Comparison of Measurement Methods. J. Appl. Phys. 99, 093909 (2006).
[46] C. Bell, S. Milikisyants, M. Huber, J. Aarts, Spin Dynamics in a Superconductor-Ferromagnet Proximity System. Phys. Rev. Lett. 100, 047002 (2008).
[47] C. Kittel, On the Theory of Ferromagnetic Resonance Absorption. Phys. Rev. 73, 155 (1948).
[48] C. Kittel, Interpretation of Anomalous Larmor Frequencies in Ferromagnetic Resonance Experiment. Phys. Rev. 71, 270 (1947).
[49] C. Kittel, On the Gyromagnetic Ratio and Spectroscopic Splitting Factor of Ferromagnetic Substances. Phys. Rev. 76, 743 (1949).
[50] K. Y. Lee, X. Yang, S. Xiao, Y. Hsu, Z. Yu, M. Feldbaum, P. Steiner, K. Wago, N. Li, D. Kuo, Fabrication and Characterization of Bit Patterned Media at 1.5 Tdots/in2 and Beyond. IEEE Inter. Mag. Conf. 1-1 (2015).
[51] V. R. Manfrinato, L. Zhang, D. Su, H. Duan, R. G. Hobbs, E. A. Stach, K. K. Berggren, Resolution Limits of Electron-Beam Lithography Toward the Atomic Scale. Nano Lett. 13, 1555–1558 (2013).
[52] J.-M. L. Beaujour, J. H. Lee, A. D. Kent, K. Krycka, C.-C. Kao, Magnetization Damping in Ultrathin Polycrystalline Co Films: Evidence for Nonlocal Effects. Phys. Rev. B 74, 214405 (2006).
[53] H. Burkard, O. Kamel, Spin Dynamics in Confined Magnetic Structures II. Springer, Berlin (2003).
[54] I. Maksymov, M. Kostylev, Broadband Stripline Ferromagnetic Resonance Spectroscopy of Ferromagnetic Films, Multilayers and Nanostructures. Phys. E: Low-Dimensional Syst. Nanostruct 69, 253-293 (2015).
[55] C. Bilzera, T. Devolder, J.-V. Kim, G. Counil, C. Chappert, Study of the Dynamic Magnetic Properties of Soft CoFeB Films. J. Appl. Phys. 100, 053903 (2006).
[56] Q. Chen, Y. Yin, H. Yuan, X. Zhou, Z. Huang, J. Du, Y. Zhai, Effect of Dilute Rare-Earth Doping on Magnetodynamic Properties of Permalloy Films. IEEE Mag. Lett. 10, 1-5 (2019).
[57] J. F. Sierra, V. V. Pryadun, S. E. Russek, M. García-Hernández, F. Mompean, R. Rozada, O. Chubykalo-Fesenko, E. Snoeck, G. X. Miao, J. S. Moodera, F. G. Aliev, Interface and Temperature Dependent Magnetic Properties in Permalloy Thin Films and Tunnel Junction Structures. J. Nanosci. Nanotechnol. 11, 7653–7664 (2011).
[58] M. Bailleul, R. Höllinger, C. Fermon, Microwave Spectrum of Square Permalloy Dots: Quasisaturated State. Phys. Rev. B 73, 104424 (2006).
[59] Y. Huo, C. Zhou, L. Sun, S. T. Chui, Y. Z. Wu1, Multiple Low-Energy Excitation States in FeNi Disks Observed by Broadband Ferromagnetic Resonance Measurement. Phys. Rev. B 94, 184421 (2016).
[60] R. Verba, V. Tiberkevich, K. Guslienko, G. Melkov, A. Slavin, Theory of Ground-State Switching in An Array of Magnetic Nanodots by Application of A Short External Magnetic Field Pulse. Phys. Rev. B 87, 134419 (2013).
[61] O. Svelto, Principles of Lasers. Plenum, London (1989).

無法下載圖示 電子全文延後公開
2025/05/22
QR CODE