研究生: |
劉書豪 Liu, Shu-Hao |
---|---|
論文名稱: |
坡莫合金次微米圓點陣列之鐵磁共振溫度相依研究 Investigation of Temperature Dependent Ferromagnetic Resonance in Arrays of Submicron Permalloy Dots |
指導教授: |
江佩勳
Jiang, Pei-hsun |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 鐵磁共振 、磁振子晶格 |
DOI URL: | http://doi.org/10.6345/NTNU202000449 |
論文種類: | 學術論文 |
相關次數: | 點閱:168 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
常見的鐵磁共振實驗通常採用薄膜結構的鐵磁性材料,而週期性結構的鐵磁性材料在鐵磁共振實驗中有其它的吸收峰值,因此我們製作了四種樣品,其中包含一種薄膜結構、三種陣列結構,比較其實驗差異。
將每一個樣品降溫至1.5 K,並且在不同溫度下量測微波訊號與掃磁場的關係,推算出四個主要的參數:α Gilbert阻尼參數、∆H0不均勻線寬、Ms飽和磁化、Hk異向性磁場,即可歸納出每個參數與溫度的關係。
圓點的直徑與間距會影響磁化動力學,導致進動循環的時間有差異。藉由實驗結果可以評論,選擇不同規格的樣品需考量能量上的損耗或是微波訊號上的雜訊。
[1] J. H. E. Griffiths, Anomalous High-frequency Resistance of Ferromagnetic Metals. Nature 158, 670–671 (1946).
[2] B. Heinrich, J. A. C. Bland, Ultrathin Magnetic Structures II: Measurement Techniques and Novel Magnetic Properties. Springer, Berlin (2005).
[3] S. Wang, A. Taratorin, Magnetic Information Storage Technology. Academic Press, London (1999).
[4] M. Henzler, Atomic Steps on Single Crystals: Experimental Methods and Properties. Appl. Phys. 9, 11–17 (1976).
[5] J.-C. Harmand, G. Patriarche, F. Glas, F. Panciera, I. Florea, J.-L. Maurice, L. Travers, Y. Ollivier, Atomic Step Flow on a Nanofacet. Phys. Rev. Lett. 121, 166101 (2018).
[6] C. Kittel, Introduction to Solid State Physics, 8th Edition. Wiley, New York (2005).
[7] I. Žutić, J. Fabian, S. Das Sarma, Spintronics: Fundamentals and Applications. Rev. Mod. Phys. 76, 323 (2004).
[8] Y. Zhao, Q. Song, S.-H. Yang, T. Su, W. Yuan, S. S. P. Parkin, J. Shi, Experimental Investigation of Temperature-Dependent Gilbert Damping in Permalloy Thin Films. Sci. Rep. 6, 22890 (2016).
[9] M. Oogane, T. Kubota, H. Naganuma, Y. Ando, Magnetic Damping Constant in Co-Based Full Heusler Alloy Epitaxial Films. J. Phys. D: Appl. Phys. 48, 164012 (2015).
[10] I. Purnama, J. Moon, C. You, Eigen Damping Constant of Spin Waves in Ferromagnetic Nanostructure. Sci. Rep. 9, 13226 (2019).
[11] S. Azzawi, A. T. Hindmarch, D. Atkinson, Magnetic Damping Phenomena in Ferromagnetic Thin-Films and Multilayers. J. Phys. D: Appl. Phys. 50, 473001 (2017).
[12] B. Lenk, H. Ulrichs, F. Garbs, M. Münzenberg, The Building Blocks of Magnonics. Phys. Rep. 507, 107-136 (2011).
[13] S. O. Demokritov, A. N. Slavin, Magnonics: From Fundamental to Applications. Topics in Appl. Phys. 125, Springer, Berlin (2013).
[14] C. Elachi, Waves in Active and Passive Periodic Structures: A Review. Proc. IEEE 64, 1666-1698 (1976).
[15] S. Neusser, D. Grundler, Magnonics: Spin Waves on the Nanoscale. Adv. Mater. 21, 2927 (2009).
[16] K. Y. Guslienko, X. F. Han, D. J. Keavney, R. Divan, S. D. Bader, Magnetic Vortex Core Dynamics in Cylindrical Ferromagnetic Dots. Phys. Rev. Lett. 96, 067205 (2006).
[17] I. Neudecker, K. Perzlmaier, F. Hoffmann, G. Woltersdorf, M. Buess, D. Weiss, C. H. Back, Modal Spectrum of Permalloy Disks Excited by In-Plane Magnetic Fields. Phys. Rev. B 73, 134426 (2006).
[18] A. Vogel, A. Drews, T. Kamionka, M. Bolte, G. Meier, Influence of Dipolar Interaction on Vortex Dynamics in Arrays of Ferromagnetic Disks. Phys. Rev. Lett. 105, 037201 (2010).
[19] J. M. Shaw, T. J. Silva, M. L. Schneider, R. D. McMichael, Spin Dynamics and Mode Structure in Nanomagnet Arrays: Effects of Size and Thickness on Linewidth and Damping. Phys. Rev. B 79, 184404 (2009).
[20] H. T. Nembach, J. M. Shaw, T. J. Silva, W. L. Johnson, S. A. Kim, R. D. McMichael, P. Kabos, Effects of Shape Distortions and Imperfections on Mode Frequencies and Collective Linewidths in Nanomagnets. Phys. Rev. B 83, 094427 (2011).
[21] F. Guo, L. M. Belova, R. D. McMichael, Spectroscopy and Imaging of Edge Modes in Permalloy Nanodisks. Phys. Rev. Lett. 110, 017601 (2013).
[22] R. W. Damon, H. Van De Vaart, Propagation of Magnetostatic Spin Waves at Microwave Frequencies in a Normally‐Magnetized Disk. J. Appl. Phys. 36, 3453 (1965).
[23] B. A. Kalinikos, Excitation of Propagating Spin Waves in Ferromagnetic Films. IEE Proc. H - Microw. Opt. Antennas 127, 4 (1980).
[24] D. D. Stancil, Theory of Magnetostatic Waves, Springer, New York (1993).
[25] B. A. Kalinikos, A. N. Slavin, Theory of Dipole-Exchange Spin Wave Spectrum for Ferromagnetic Films with Mixed Exchange Boundary Conditions. J. Phys. C: Solid State Phys. 19, 7013 (1986).
[26] R. W. Damon, J. R. Eshbach, Magnetostatic Modes of a Ferromagnet Slab. J. Phys. Chem. Solids 19, 308 (1961).
[27] D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics Extended, 10th Edition. Wiley, New York (2014).
[28] J.H. Van Vleck, On the Anisotropy of Cubic Ferromagnetic Crystals. Phys. Rev. 52, 1178 (1937).
[29] J. Stöhr, H. C. Siegmann, Magnetism From Fundamentals to Nanoscale Dynamics. Springer, Berlin (2006).
[30] J. M. Luttinger, C. Kittel, A Note on the Quantum Theory of Ferromagnetic Resonance. Helv. Phys. Acta. 21, 480 (1948).
[31] L. D. Landau, E. Lifshitz, On the Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Bodies. Phys. Z. Sow. 8, 153–169 (1935).
[32] O. Yaln, Ferromagnetic Resonance Theory and Applications. InTech (2013).
[33] T. Taniguchi, H. Imamura, Spin Pumping in Ferromagnetic Multiplayers. Mod. Phys. Lett. B 22(30), 2909-2929 (2008).
[34] T. L. Gilbert, A Lagrangian Formulation of the Gyromagnetic Equation of the Magnetization Field. Phys. Rev. 100, 1243 (1955).
[35] T. L. Gilbert, A Phenomenological Theory of Damping in Ferromagnetic Materials. IEEE Trans. Magn. 40, 3443 (2004).
[36] A. Brataas, Y. Tserkovnyak, G. W. Bauer, Scattering Theory of Gilbert Damping. Phys. Rev. Lett. 101, 037208 (2008).
[37] Z. Celinski, B. Heinrich, Ferromagnetic Resonance Linewidth of Fe Ultrathin Films Grown on a Bcc Cu Substrate. J. Appl. Phys. 70, 5935–5937 (1991).
[38] B. Heinrich, J. A. C. Bland, Ultrathin Magnetic Structures II: Ferromagnetic Rresonance in Ultrathin Film Structures. Springer, Berlin (2005).
[39] B. Heinrich, J. F. Cochran, FMR Linebroadening in Metals Due to Two‐Magnon Scattering. J. Appl. Phys. 57, 3690 (1985).
[40] T. D. Rossing, Resonance Linewidth and Anisotropy Variation in Thin Films. J. Appl. Phys. 34, 995 (1963).
[41] D. D. Stancil, A. Prabhakar, Spin Waves: Theory and Application. Springer, Berlin (2009).
[42] B. Heinrich, J. F. Cochran, Ultrathin Metallic Magnetic Films: Magnetic Anisotropies and Exchange Interactions. Adv. Phys. 42, 523-639 (1993).
[43] H. Suhl, Theory of the Magnetic Damping Constant. IEEE Trans. Magn. 34, 1834-1838 (1998).
[44] J.-M. Beaujour, D. Ravelosona, I. Tudosa, E. E. Fullerton, A. D. Kent, Ferromagnetic Resonance Linewidth in Ultrathin Films with Perpendicular Magnetic Anisotropy. Phys. Rev. B 80, 180415 (2009).
[45] S. S. Kalarickal, P. Krivosik, M. Wu, C. E. Patton, Ferromagnetic Resonance Linewidth in Metallic Thin Films: Comparison of Measurement Methods. J. Appl. Phys. 99, 093909 (2006).
[46] C. Bell, S. Milikisyants, M. Huber, J. Aarts, Spin Dynamics in a Superconductor-Ferromagnet Proximity System. Phys. Rev. Lett. 100, 047002 (2008).
[47] C. Kittel, On the Theory of Ferromagnetic Resonance Absorption. Phys. Rev. 73, 155 (1948).
[48] C. Kittel, Interpretation of Anomalous Larmor Frequencies in Ferromagnetic Resonance Experiment. Phys. Rev. 71, 270 (1947).
[49] C. Kittel, On the Gyromagnetic Ratio and Spectroscopic Splitting Factor of Ferromagnetic Substances. Phys. Rev. 76, 743 (1949).
[50] K. Y. Lee, X. Yang, S. Xiao, Y. Hsu, Z. Yu, M. Feldbaum, P. Steiner, K. Wago, N. Li, D. Kuo, Fabrication and Characterization of Bit Patterned Media at 1.5 Tdots/in2 and Beyond. IEEE Inter. Mag. Conf. 1-1 (2015).
[51] V. R. Manfrinato, L. Zhang, D. Su, H. Duan, R. G. Hobbs, E. A. Stach, K. K. Berggren, Resolution Limits of Electron-Beam Lithography Toward the Atomic Scale. Nano Lett. 13, 1555–1558 (2013).
[52] J.-M. L. Beaujour, J. H. Lee, A. D. Kent, K. Krycka, C.-C. Kao, Magnetization Damping in Ultrathin Polycrystalline Co Films: Evidence for Nonlocal Effects. Phys. Rev. B 74, 214405 (2006).
[53] H. Burkard, O. Kamel, Spin Dynamics in Confined Magnetic Structures II. Springer, Berlin (2003).
[54] I. Maksymov, M. Kostylev, Broadband Stripline Ferromagnetic Resonance Spectroscopy of Ferromagnetic Films, Multilayers and Nanostructures. Phys. E: Low-Dimensional Syst. Nanostruct 69, 253-293 (2015).
[55] C. Bilzera, T. Devolder, J.-V. Kim, G. Counil, C. Chappert, Study of the Dynamic Magnetic Properties of Soft CoFeB Films. J. Appl. Phys. 100, 053903 (2006).
[56] Q. Chen, Y. Yin, H. Yuan, X. Zhou, Z. Huang, J. Du, Y. Zhai, Effect of Dilute Rare-Earth Doping on Magnetodynamic Properties of Permalloy Films. IEEE Mag. Lett. 10, 1-5 (2019).
[57] J. F. Sierra, V. V. Pryadun, S. E. Russek, M. García-Hernández, F. Mompean, R. Rozada, O. Chubykalo-Fesenko, E. Snoeck, G. X. Miao, J. S. Moodera, F. G. Aliev, Interface and Temperature Dependent Magnetic Properties in Permalloy Thin Films and Tunnel Junction Structures. J. Nanosci. Nanotechnol. 11, 7653–7664 (2011).
[58] M. Bailleul, R. Höllinger, C. Fermon, Microwave Spectrum of Square Permalloy Dots: Quasisaturated State. Phys. Rev. B 73, 104424 (2006).
[59] Y. Huo, C. Zhou, L. Sun, S. T. Chui, Y. Z. Wu1, Multiple Low-Energy Excitation States in FeNi Disks Observed by Broadband Ferromagnetic Resonance Measurement. Phys. Rev. B 94, 184421 (2016).
[60] R. Verba, V. Tiberkevich, K. Guslienko, G. Melkov, A. Slavin, Theory of Ground-State Switching in An Array of Magnetic Nanodots by Application of A Short External Magnetic Field Pulse. Phys. Rev. B 87, 134419 (2013).
[61] O. Svelto, Principles of Lasers. Plenum, London (1989).