簡易檢索 / 詳目顯示

研究生: 蔡宗賢
Tsung-Hsien Tsai
論文名稱: 提升點燈遊戲之拼圖法搜尋速度
Reducing the Solving Time of the Patching Method for All-Ones Problem
指導教授: 林順喜
Lin, Shun-Shii
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 59
中文關鍵詞: 縮小線性系統拼圖法全一問題點燈遊戲
英文關鍵詞: reduced linear system, patching method, all-ones problem, lamp lighting problem
論文種類: 學術論文
相關次數: 點閱:165下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 點燈遊戲,又名all-ones problem,最早是由Sutner於1988年提出的論文中所定義的名詞。這個問題假設有一個N×M大小的棋盤狀盤面,一開始是全暗,當我們點其中一格燈泡時,與它上、下、左、右相鄰的鄰居包含自己的狀態會由亮變暗或是由暗變亮,這條規則稱為σ+-rule。此遊戲的目標是找出一組點燈法則使得整個盤面上每一格子都變成全亮。
    本論文將先前陳昱璇的論文所提出的縮小線性系統之演算法與陳昶安同學所提出拼圖法之理論作一種結合,使得收集拼圖法所需的基本盤面解能更加快速。成果方面,針對N×M的盤面,N與M為整數,從原本拼圖法N 20且M 1已得到解提升到N 63且M 1都已破解。此外亦證明每個N值都存在一種尺寸為N×P的盤面,任意輸入一組第一列的組合,經過延展到第P列,都能獲得此尺寸為N×P的盤面解。

    The lamp lighting game, also known as all-ones problem, was first proposed in 1988 by Sutner. The problem can be described as follows: suppose that there is an N×M chessboard, each square represents a light bulb. When we press on one square, the status of each of its non-diagonal adjacent squares including itself will be changed from lit to unlit or from unlit to lit. This rule is called the σ+-rule. Initially all squares are in unlit status. The goal is to identify a set of squares that need to be pressed in order to turn all lights on.
    In this thesis, we combine the reduced linear system proposed by Yu-Xuan Chen and the patching method proposed by Chang-An Chen to reduce the solving time substantially. Then we are able to find all solutions for the chessboards with a size N×M, 1 ≤ N ≤ 63 and 1 ≤ M. We also proved that, for each value of N, there exists a value P such that whatever value we fill in the first row, there will always have a solution for the chessboard with a size N×P.

    摘 要 i ABSTRACT ii 誌謝 iii 目錄 iv 附表目錄 vi 附圖目錄 vii 第一章 簡介 1 第一節 問題描述 1 第二節 研究目的與背景 3 第三節 論文組織 5 第二章 相關研究探討 6 第一節 全一問題在任意圖中必定有解之證明 6 第二節 線性代數求解的方法 7 第三節 搜尋演算法 9 第四節 有限狀態機 11 第五節 縮小的線性系統 13 第六節 拼圖法 17 第三章 改進的演算法 22 第一節 進一步的加速方法 22 第二節 縮小的線性系統與拼圖法之優缺點 29 第三節 N×P盤面之拼圖法 31 第四節 證明N×P盤面之存在性 36 第五節 程式環境與流程圖 38 第六節 處理時間 40 第七節 程式介面 42 第四章 結論 46 第一節 結論與未來研究 46 第二節 研究成果 47 附錄A 本法求出的一些小盤面的解 48 參考文獻 59

    1. 陳昶安、林順喜,“欄數少於20之點燈遊戲更快速的電腦解法之研究”,師大資工系大四專題研究報告,2009。
    2. 蔡明原、林順喜,“一個有趣的益智遊戲「點燈」之電腦解法及分析”,中華民國資訊學會通訊,第一卷第四期,7-13頁,1988。
    3. 陳昱璇,“全一問題的改良演算法研究”,國立台灣師大資工所碩士論文,1997。
    4. W. Y. C. Chen, X. Li, C. Wang and X. Zhang, “Linear time algorithms to the minimum all-ones problem for unicyclic and bicyclic graphs”, Electronic Notes in Discrete Mathematics, Vol.17, pp.93-98, 2004.
    5. J. Goldwasser, W. F. Klostermeyer, and H. Ware, “Fibonacci polynomials and parity domination in grid graphs”, Graphs and Combinatorics, Vol.18, pp.271-283, 2002.
    6. O. P. Lossers, “Solution to problem 10197”, American Mathematical Monthly, Vol.100-8, pp.806-807, 1993.
    7. K. Sutner, “Problem 88-8”, The Mathematical Intelligencer, Vol.10-3, 1988。
    8. K. Sutner, “Linear cellular automata and the garden-of-eden”, The Mathematical Intelligencer, Vol.11-2, pp.49-53, 1989.
    9. Jaap’s Puzzle Page,
    http://www.geocities.com/jaapsch/puzzles/lights.htm.

    下載圖示
    QR CODE