簡易檢索 / 詳目顯示

研究生: Chrisna Setyo Nugroho
Chrisna Setyo Nugroho
論文名稱: Complex Scalar Dark Matter in Gauged Two Higgs Doublet Model
Complex Scalar Dark Matter in Gauged Two Higgs Doublet Model
指導教授: 陳傳仁
Chen, Chuan-Ren
阮自強
Yuan, Tzu-Chiang
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 91
中文關鍵詞: Complex Scalar Dark MatterGauged Two Higgs Doublet Model
英文關鍵詞: Complex Scalar Dark Matter, Gauged Two Higgs Doublet Model
DOI URL: http://doi.org/10.6345/NTNU201900378
論文種類: 學術論文
相關次數: 點閱:139下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無中文摘要

    In this thesis, we study the complex scalar dark matter phenomenology in Gauged Two Higgs
    Doublet Model (G2HDM). It is shown that a accidental Z 2 symmetry arises naturally from
    the gauge invariance of SU(2) L ×U(1) Y × SU(2) H ×U(1) X in the model and hence protects
    the stability of dark matter. The complex scalar dark matter in the model is categorized into
    inert doublet-like, SU(2) H triplet-like and Goldstone boson-like. While the inert doublet-like
    dark matter is ruled out by XENON1T data, the SU(2) H triplet-like and Goldstone boson-like
    dark matter satisfy the relic density from PLANCK and all other experimental constraints
    from XENON1T, Fermi-LAT and LHC. We discuss in detail the constraints on the parameter
    space coming from the four pillars of dark matter phenomenology – relic density, direct and
    indirect detection, and collider searches.

    Table of contents List of figures xiii List of tables xvii 1 Introduction 1 2 Short Review of the Standard Model 5 2.1 The Weak Interaction and the SM Particle Content 5 2.2 The SM Gauge Interactions and Symmetry Breaking 8 2.2.1 The SM Field Contents 8 2.2.2 The SM Lagrangian 10 2.2.3 The Higgs Mechanism 13 3 The G2HDM Model 17 3.1 Motivation 17 3.2 The Particle Contents 19 3.3 Higgs Potential 20 3.4 The SSB of the Potential and the Mass Spectrum 22 3.4.1 Spontaneous Symmetry Breaking 22 3.4.2 Scalar Mass Spectrum 23 3.4.3 Gauge Boson Mass Spectrum 25 3.4.4 Fermionic Mass Spectrum 27 3.5 The Accidental Z2 Symmetry 28 3.6 Theoretical Constraints on the Scalar Sector 29 4 WIMP Dark Matter and Its Constraints 33 4.1 Astrophysical Evidence of the Dark Matter 33 4.1.1 Galactic Rotation Curves 33 4.1.2 Gravitational Lensing 34 4.2 WIMP as Thermally Produced Dark Matter 35 4.3 Dark Matter Searches 37 4.3.1 Dark Matter Direct Search 38 4.3.2 Dark Matter Indirect Search 39 4.3.3 Dark Matter Collider Search 40 5 Dark Matter in G2HDM: Constraints and Methodology 43 5.1 Dark Matter Properties in G2HDM and Experimental Constraints 44 5.1.1 Relic Density 44 5.1.2 Direct Detection 48 5.1.3 Indirect Detection: Gamma-ray from dSphs 50 5.1.4 Collider Search 51 5.2 Numerical Methodology 53 6 Dark Matter in G2HDM: Numerical Results 57 6.1 Inert Doublet-like DM 57 6.2 SU (2)H Triplet-like DM 65 6.3 SU (2)H Goldstone Boson-like DM 71 6.4 Constraining Parameter Space in G2HDM 75 7 Summary 79 Appendix A Relevant Couplings 81 A.1 Dominant Couplings for Dark Matter 81 Appendix B Benchmark Points for Monojet 85 References 87

    References
    [1] S. L. Glashow, Nucl. Phys. 10, 107 (1959).
    [2] A. Salam and J. C. Ward, Nuovo Cim. 11, 568 (1959).
    [3] S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).
    [4] F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964).
    [5] P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964).
    [6] G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Phys. Rev. Lett. 13, 585 (1964).
    [7] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012) [arXiv:1207.7214
    [hep-ex]].
    [8] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012)
    [arXiv:1207.7235 [hep-ex]].
    [9] W. C. Huang, Y. L. S. Tsai and T. C. Yuan, JHEP 1604, 019 (2016) [arXiv:1512.00229
    [hep-ph]].
    [10] M. E. Peskin and D. V. Schroeder, “An Introduction to quantum field theory,” Westview
    Press; 1 edition (October 2, 1995).
    [11] M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, no. 3, 030001 (2018).
    doi:10.1103/PhysRevD.98.030001
    [12] Wikipedia, https://en.wikipedia.org/wiki/Fermi-Dirac statistics
    [13] Wikipedia, https://en.wikipedia.org/wiki/Bose-Einstein statistics
    [14] G. Aad et al. [ATLAS and CMS Collaborations], Phys. Rev. Lett. 114, 191803 (2015)
    [arXiv:1503.07589 [hep-ex]].

    [15] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
    [16] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
    [17] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher and J. P. Silva, Phys.
    Rept. 516, 1 (2012) [arXiv:1106.0034 [hep-ph]].
    [18] N. G. Deshpande and E. Ma, Phys. Rev. D 18, 2574 (1978).
    [19] E. Ma, Phys. Rev. D 73, 077301 (2006) [hep-ph/0601225].
    [20] R. Barbieri, L. J. Hall and V. S. Rychkov, Phys. Rev. D 74, 015007 (2006) [hep-
    ph/0603188].
    [21] L. Lopez Honorez, E. Nezri, J. F. Oliver and M. H. G. Tytgat, JCAP 0702, 028 (2007)
    [hep-ph/0612275].
    [22] L. M. Krauss and F. Wilczek, Phys. Rev. Lett. 62, 1221 (1989).
    [23] R. Kallosh, A. D. Linde, D. A. Linde and L. Susskind, Phys. Rev. D 52, 912 (1995)
    [hep-th/9502069].
    [24] W. C. Huang, Y. L. S. Tsai and T. C. Yuan, Nucl. Phys. B 909, 122 (2016)
    doi:10.1016/j.nuclphysb.2016.05.002 [arXiv:1512.07268 [hep-ph]].
    [25] W. C. Huang, H. Ishida, C. T. Lu, Y. L. S. Tsai and T. C. Yuan, Eur. Phys. J. C 78, no.
    8, 613 (2018) doi:10.1140/epjc/s10052-018-6067-7 [arXiv:1708.02355 [hep-ph]].
    [26] A. Arhrib, W. C. Huang, R. Ramos, Y. L. S. Tsai and T. C. Yuan, Phys. Rev. D 98, no.
    9, 095006 (2018) doi:10.1103/PhysRevD.98.095006 [arXiv:1806.05632 [hep-ph]].
    [27] C. T. Huang, R. Ramos, V. Q. Tran, Y. L. S. Tsai and T. C. Yuan, arXiv:1905.02396
    [hep-ph].
    [28] D. Feldman, Z. Liu and P. Nath, “The Stüeckelberg extension and milli weak and
    milli charged dark matter,” AIP Conf. Proc. 939, 50 (2007) doi:10.1063/1.2803786
    [arXiv:0705.2924 [hep-ph]].
    [29] D. Feldman, Z. Liu and P. Nath, “The Stüeckelberg Z-prime Extension with Kinetic
    Mixing and Milli-Charged Dark Matter From the Hidden Sector,” Phys. Rev. D 75,
    115001 (2007) doi:10.1103/PhysRevD.75.115001 [hep-ph/0702123 [HEP-PH]].

    [30] D. Feldman, Z. Liu and P. Nath, “The Stüeckelberg Z Prime at the LHC: Discov-
    ery Potential, Signature Spaces and Model Discrimination,” JHEP 0611, 007 (2006)
    doi:10.1088/1126-6708/2006/11/007 [hep-ph/0606294].
    [31] V. C. Rubin, N. Thonnard, and W. K. Ford, Jr., “Rotational properties of 21 SC galaxies
    with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885
    /R = 122 kpc/,” Astrophys. J. 238 (1980) 471.
    [32] R. Gavazzi, T. Treu, J. D. Rhodes, L. V. Koopmans, A. S. Bolton, S. Burles, R. Massey
    and L. A. Moustakas, Astrophys. J. 667, 176 (2007).
    [33] W. Kolb, and M. S. Turner, The Early Universe, Westview Press, Boulder, Colorado,
    1994.
    [34] M. Lisanti, "Lectures on Dark Matter Physics", arXiv:1603.03797 [hep-ph].
    [35] J. Cooley, “Overview of Non-Liquid Noble Direct Detection Dark Matter Experiments,”
    Phys. Dark Univ. 4 (2014) 92, 1410.4960.
    [36] G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre, S. Profumo and
    F. S. Queiroz, Eur. Phys. J. C 78, no. 3, 203 (2018) doi:10.1140/epjc/s10052-018-5662-y
    [arXiv:1703.07364 [hep-ph]].
    [37] M. G. Aartsen et al. [IceCube Collaboration], Eur. Phys. J. C 75, no. 99, 20 (2015)
    doi:10.1140/epjc/s10052-014-3224-5 [arXiv:1406.6868 [astro-ph.HE]].
    [38] S. J. Lin, X. J. Bi, P. F. Yin and Z. H. Yu, arXiv:1504.07230 [hep-ph].
    [39] H. Abdallah et al. [H.E.S.S. Collaboration], Phys. Rev. Lett. 117, no. 11, 111301 (2016)
    doi:10.1103/PhysRevLett.117.111301 [arXiv:1607.08142 [astro-ph.HE]].
    [40] T. R. Slatyer, Phys. Rev. D 93, no. 2, 023527 (2016) doi:10.1103/PhysRevD.93.023527
    [arXiv:1506.03811 [hep-ph]].
    [41] M. Pierre, J. M. Siegal-Gaskins and P. Scott, JCAP 1406, 024 (2014) Erra-
    tum: [JCAP 1410, E01 (2014)] doi:10.1088/1475-7516/2014/10/E01, 10.1088/1475-
    7516/2014/06/024 [arXiv:1401.7330 [astro-ph.HE]].
    [42] M. L. Ahnen et al. [MAGIC and Fermi-LAT Collaborations], JCAP 1602, no. 02, 039
    (2016) doi:10.1088/1475-7516/2016/02/039 [arXiv:1601.06590 [astro-ph.HE]].
    [43] M. Pierre, arXiv:1901.05822 [hep-ph].

    [44] http://pdg.arsip.lipi.go.id/2017/reviews/rpp2016-rev-susy-2-experiment.pdf
    [45] G. Belanger, F. Boudjema, A. Goudelis, A. Pukhov and B. Zaldivar, Comput. Phys.
    Commun. 231, 173 (2018) doi:10.1016/j.cpc.2018.04.027 [arXiv:1801.03509 [hep-
    ph]].
    [46] N. Aghanim et al. [Planck Collaboration], arXiv:1807.06209 [astro-ph.CO].
    [47] E. Aprile et al. [XENON Collaboration], Phys. Rev. Lett. 121, no. 11, 111302 (2018)
    doi:10.1103/PhysRevLett.121.111302 [arXiv:1805.12562 [astro-ph.CO]].
    [48] J. L. Feng, J. Kumar, D. Marfatia and D. Sanford, Phys. Lett. B 703, 124 (2011)
    doi:10.1016/j.physletb.2011.07.083 [arXiv:1102.4331 [hep-ph]].
    [49] G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, Comput. Phys. Commun. 180,
    747 (2009) doi:10.1016/j.cpc.2008.11.019 [arXiv:0803.2360 [hep-ph]].
    [50] A. Albert et al. [Fermi-LAT and DES Collaborations], Astrophys. J. 834, no. 2, 110
    (2017) doi:10.3847/1538-4357/834/2/110 [arXiv:1611.03184 [astro-ph.HE]].
    [51] X. Huang, Y. L. S. Tsai and Q. Yuan, Comput. Phys. Commun. 213, 252 (2017)
    doi:10.1016/j.cpc.2016.12.015 [arXiv:1603.07119 [hep-ph]].
    [52] M. Cirelli, "A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection" ,
    http://www.marcocirelli.net/PPPC4DMID.html.
    [53] M. Aaboud et al. [ATLAS Collaboration], JHEP
    doi:10.1007/JHEP01(2018)126 [arXiv:1711.03301 [hep-ex]].
    1801,
    126
    (2018)
    [54] A. M. Sirunyan et al. [CMS Collaboration], Phys. Rev. D 97, no. 9, 092005 (2018)
    doi:10.1103/PhysRevD.97.092005 [arXiv:1712.02345 [hep-ex]].
    [55] J. Alwall et al., JHEP 1407,
    [arXiv:1405.0301 [hep-ph]].
    079 (2014) doi:10.1007/JHEP07(2014)079
    [56] A. Goudelis, B. Herrmann and O. Stal, JHEP
    doi:10.1007/JHEP09(2013)106 [arXiv:1303.3010 [hep-ph]].
    1309,
    106
    (2013)
    [57] T. Hambye, F.-S. Ling, L. Lopez Honorez and J. Rocher, JHEP 0907, 090 (2009)
    Erratum: [JHEP 1005, 066 (2010)] doi:10.1007/JHEP05(2010)066, 10.1088/1126-
    6708/2009/07/090 [arXiv:0903.4010 [hep-ph]].
    [58] F. Petricca et al. [CRESST Collaboration], arXiv:1711.07692 [astro-ph.CO].

    [59] A. Morselli [CTA Consortium], PoS ICRC 2017, 921 (2018) doi:10.22323/1.301.0921
    [arXiv:1709.01483 [astro-ph.IM]].

    下載圖示
    QR CODE