簡易檢索 / 詳目顯示

研究生: 賴拓文
To-Wen Lai
論文名稱: 基於單攝影機技術之室內影像定位系統設計 應用於自主式機械人
A design of a single CCD-based indoor localization technology-applied to autonomous mobile robots
指導教授: 王偉彥
Wang, Wei-Yen
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 78
中文關鍵詞: 影像量測PLDMS室內定位系統
英文關鍵詞: Image-based distance measuring system, PLDMS, Indoor localization system
論文種類: 學術論文
相關次數: 點閱:208下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文不同於傳統雙影像設備距離量測方法,採用以平行線距離量測系統(Parallel Lines Distance Measurement System, PLDMS)來實現單一影像設備距離量測,不僅可降低成本且環境架設容易,而且只需知道影像設備的最大像素值、視角及光學距離等環境參數。由於本文之影像設備為固定單一位置,因此採用運算速度較快的背景差值法來提取前景,同時使用低通濾波器進行背景更新以降低背景噪聲,亦使用影像型態學方法來提取完整前景資訊及去除細微雜訊。在機械人室內定位實驗上,我們經由室內的平面地圖規劃,將網路攝影機(Webcam)設備架設於最合適處來監測移物體,再透過所提出單影像設備測距的方法來實現定位。本論文將三台影像設備分別架設於三個走廊轉角處,藉由事先定義的影像設備全域座標,我們可透過單一影像定位獲取移動物體之座標。最後,再透過影像設備間切換機制進而得到完整的全域座標資訊。

    Unlike traditional Binocular vision measurement method, this thesis presents a single-webcam-based measurement method developed from a proposed Parallel Lines Distance Measurement System (PLDMS). PLDMS can create the identical ruler for all measured objects. Not only can the proposed measurement method reduce production cost, but also the experimental environment is easy to set up because only three parameters need to decide, the maximum pixel, perspective, and optical distance. Because the locations of webcams are fixed, we use the simple background subtraction method to extract the prospects to improve the problem of computational burden. Furthermore, we use the low-pass filter and on-line background update method to reduce background noise, and adopt the image morphology to complete prospect information and to remove the slight noise. In our indoor experiments, webcams are located several places on where we can clearly monitor the move of a robot in the fifth floor of the Science and Technology building of Nation Taiwan Normal University. Finally, through the switching mechanism and the predefined coordinate system, we can get the location of the robot when it is moving.

    中文摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 緒論 1  1.1 研究動機與背景 1  1.2 研究目的 4  1.3 研究限制 5  1.4 論文架構 6 第二章 影像處理介紹 7  2.1  R.G.B模型 7  2.2 高斯平滑濾波器 8  2.3 影像色彩 10   2.3.1 灰階化 10   2.3.2 二值化 11  2.4 二值化影像形態學 13   2.4.1 侵蝕、膨脹 13   2.4.2 閉合、斷開 13  2.5 連通元件標記法 15  2.6 前景提取 17   2.6.1 背景相減 17   2.6.2 背景更新 18 第三章 距離量測方法 19  3.1 傳統量測技術 19   3.1.1 接觸式量測 19   3.1.2 非接觸式量測 21  3.2 基於影像之量測技術 25   3.2.1 雙CCD距離量測 25   3.2.2 IBDMS量測原理與系統架構 26   3.2.3 PLDMS量測原理與系統架構 27  3.3 應用IBDMS及PLDMS於矩形物體三維資訊 29   3.3.1 量測原理 30   3.3.2 實驗結果 31 第四章 移動物體定位系統 34  4.1 移動物體位置判斷 34  4.2 單一影像設備定位 37  4.3 全域地圖座標 42   4.3.1 影像設備座標 43   4.3.2 移動物體座標 46 第五章 實驗結果和討論 51  5.1 系統流程圖 51  5.2 平行線建立 52  5.3 建立背景 58  5.4 Multi-webcam移動物體定位系統 61 第六章 結論及未來展望 73  6.1 結論 73  6.2 未來展望 73 參考文獻 74

    [1] J. B. Kim and H. S. Jun, “Vision-Based Location Positioning using Augmented Reality for Indoor Navigation,” IEEE Transactions on Consumer Electronic, vol. 54, no. 3, Aug. 2008.
    [2] F. Serratosa and A. Sanfeliu, “Vision-Based Robot Positioning by an Exact Distance Between Histograms,” The 18th International Conference on Pattem Recognition (ICPR’09).
    [3] J. Larranaga, L. Muguira, J. Manuel L. Garde, and J. Vazquez, “An Environment Adaptive ZigBee-based Indoor Positioning Algorithm,” 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Zurich, Switzerland, Sept. 2010, pp. 15-17.
    [4] L. Wirola, Tommi A. Laine, and J. Syrjarinne, “Mass-market requirements for indoor positioning and indoor navigation,” 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Zurich, Switzerland, Sept. 2010, pp. 15-17.
    [5] C. Shengli and Z. Huiqing, “Research on Indoor Position Algorithm Based on Image Sequence,” 2010 International Conference on Computer Design And Appliations (ICCDA 2010).
    [6] M. Cypriani, F. Lassabe, P. Canalda, and F. Spies, “Wi-Fi-Based Indoor Positioning: Basic Techniques, Hybrid Algorithms and Open Software Platform,” 2010 International Conference On Indoor Positioning And Indoor Navigation (IPIN), pp.15-17 Sept. 2010, Zurich, SWITZERLAND.
    [7] R. Want, Hopper, V. Falco, and Gibbons, “The Active Badge Location System,” ACM Transactions on Information System, vol. 10, Issue 1, pp. 91-102. 1992.
    [8] P. Bahl and V. N. Padmanabhan, “RADAR: An In-bulding RF-based User Location and Tracking System,” IEEE Computer and Communications Conference, vol. 2, 2000, pp. 775-784.
    [9] R. Ouellette and K. Hirasawa, “A Comparison of SLAM Implementations for Indoor Mobile Robots,” Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems San Diego, Oct 29 - Nov 2, 2007.
    [10] S. Latif, R. Tariq, W. Haq, and U. Hashmi, “Indoor Positioning System Using ultrasonics,” Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST) Islamabad, Pakistan, Jan. 2012.
    [11] H. Kawaji, K. Hatada, T. Yamasaki, and K. Aizawa, “An image-based Indoor Positioning for Digital Museum Applications,” Virtual Systems and Multimedia (VSMM), 2010.
    [12] http://zh.wikipedia.org/wiki/%E7%81%B0%E9%9A%8E
    [13] A. Caarullo and M. Parvis, “An ultrasonic sensor for distance measurement in automotive applications,” IEEE Sensors J., vol. 1, no. 3, pp. 143-147, Oct. 2001.
    [14] H.-T. shin, “Vehicles Crash proof Laser Radar,” M.S. thesis, Opt. Sci. Center, National Central Univ., Chung Li City, Taiwan, R.O.C., 2000.
    [15] K. Osugi, K. Miyauchi, N. Furui, and H. Miyakoshi, “Development of the scanning laser radar for ACC system,” JSAE review, vol. 20, no. 4, Oct. 1999, pp. 549-554.
    [16] K. Nakahira, T. Kodama, S. Morita, and S. Okuma, “Distance measurement by an ultrasonic system based on a digital polarity correlator,” IEEE Transactions on Instrumentation and Measurement, vol. 50, no. 6, pp. 1478-1752, Dec. 2001.
    [17] F. Gueuning, M. Varlan, C. Eugene, and P. Dupuis, “Accurate distance measurement by an autonomous ultrasonic system combining time-of-flight and phase-shift methods,” IEEE Transactions on Instrumentation and Measurement, vol. 46, no. 6, pp. 1236-1240, Dec. 1997.
    [18] M. Miwa, M. Ishii, and M. Sato, “Screen projection camera for ranging far away objects,” Pattern Recognition, 2000. Proceedings.15th International Conference, Spain, 2000, pp. 4744-4747.
    [19] T. Egami, S. Oe, K. Terada, and T. Kashiwagi, “Three dimensional measurement using color image and movable CCD system,” The 27th Annual Conference of the IEEE Industrial Electronic Society, 2001, pp. 1932-1936.
    [20] A. Cano-Garcia, and P. R. Fernaindez, “Simplified Method for Radiometric Calibration of an Array Camera,” Proceedings of the IEEE International Symposium on Intelligent Signal Processing, pp. 1-5, Oct. 2007.
    [21] C. Mataix, Lazaro, A. Gardel, and R. Mateos, “Sensor for environment wide capture with linear response,” Emerging Technologies and Factory Automation, 7th IEEE International Conference, Barcelona, 1999, pp. 571-578.
    [22] R. cucchiara, M. Piccardi, and P. Mello, “Image analysis and rule-based reasoning for a traffic monitoring system,” IEEE Trans. Instell. Transp. Syst., vol. 1, no. 4, pp. 119-130, March 2000.
    [23] H. Yan, “Image analysis for digital media applications,” IEEE Comput. Graph. Appl., vol. 21, no.1 , pp. 18-26, Jan. 2011.
    [24] B. G. Mertzios and K. Tsiriklias, “Applications of coordinate logic filters in image analysis and pattern recognition,” in Proc. Int. Symp. Image and Signal Processing and Analysis, 2001, pp. 125-130.
    [25] U. Dhond, and J. Aggarwal, “Structure from stereo-A review,” IEEE Trans. System Man Cybernetics. vol. 19, no. 6, pp. 1489-1510, 1989.
    [26] H. Pan, “Uniform full information matching using complex conjugate wavelet pyramids,” International Archives of Photogrammetry and Remote Sensing, vol. XXXI, 1996.
    [27] C. C. Hsu, M. C. Lu, W. Y. Wang, and Y. Y. Lu, “Three dimensional measurement of distant objects based on laser-projected CCD images,” IET Science, Measurement & Technology, vol. 3, no. 3, pp. 197-207, May 2009.
    [28] B. G. Mertzios and I. S. Tsirikolias, “Applications of coordinate logic filters in image analysis and pattern recognition,” Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis, Pula, pp. 125-130, Jun. 2001.
    [29] M-C. Lu, “Image-based height measuring system for Liquid or particles in tanks,” ROC patent of invention, no. 201536, 2004.
    [30] C.-C. Chen, M.-C. Lu, W.-Y. Wang, and C.-T. Chuang, “The Mere diverter and its application,” ROC patent of invention, no. M279875, 2005.
    [31] M.-C. Lu, W.-Y. Wang, C.-T. Chuang, C.-P. Tsai, and Y.-Y. Lu, “Height Measuring System via Slant Photography,” Proceedings of the 4th International Conference on Autonomous Robots and Agents, Wellington, New Zealand, pp.302-307, Feb. 10-12, 2009.
    [32] W.-Y. Wang, M.-C. Lu, C.-T. Chuang, and J.-C. Cheng, “Image-Based Height Measuring System,” The 7th WSEAS International Conference on Signal Processing Computational Geometry & Artificial Vision (ISCGAV'07), Vouliagmeni Beach, Athens, Greece, Aug. 24-26, 2007, pp.147-152.
    [33] M.-C. Lu, W.-Y. Wang, and H.-H. Lan, “Image-based height measuring system for Liquid or particles in tanks,” Proc. IEEE Int. Conf. Networking, Sensing and Control, vol. 1, 2004, pp. 24-29.
    [34] C.-C. Chen, M.-C. Lu, C.-T. Chuang, and C.-P. Tsai, “Vision-Based Distance and Area Measurement System,” WSEAS Transactions on Signal Processing, Issue 2, vol. 4, pp. 36-43, Feb. 2008.

    下載圖示
    QR CODE