簡易檢索 / 詳目顯示

研究生: 羅嘉佑
Jia-You Lo
論文名稱: 晶圓穿孔陣列之光輔助電化學蝕刻特性研究
Silicon wafer through-holes fabricated by photo-assisted electrochemical etching
指導教授: 楊啓榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 174
中文關鍵詞: 微機電系統光輔助電化學蝕刻微穿孔陣列抗反射結構
英文關鍵詞: MEMS, photo-assisted electrochemical etching, mocri through-holes array, antireflective structure
論文種類: 學術論文
相關次數: 點閱:215下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究自行開發低光源成本之光輔助電化學蝕刻(photo-assisted electrochemical etching, PAECE)設備,藉由改變光照強度及界面活性劑等實驗條件,並改善電化學蝕刻穿孔製程,得到較高之蝕刻速率與低孔壁粗糙度的穿洞陣列。未來可應用於積體化微探針陣列之製作,或利用晶圓內垂直導體之晶圓內連線而實現晶圓級堆疊封裝之目的。此技術開發有設備與製程成本低、可批次生產、良率高,且與半導體製程相容性高等特點。
    由實驗結果已驗證,在利用光輔助電化學蝕刻技術製作高深寬比微穿孔陣列方面,可得到500 um的孔洞深度、穿孔時間最快約為16.7 hr的微穿孔陣列,且孔壁形貌有極佳之表面粗糙度。電化學蝕刻之孔徑最小約為21 um,蝕刻孔洞之深寬比最大約為17.7。相關之實驗條件如下:光源照度為32000 lux至18000 lux,選用陽離子型界面活性劑1 wt.% DC-1、陰離子型界面活性劑1 wt.% MA、強氧化劑2.5 wt.% H2O2及有機界面活性劑1 wt.% Alcohol。經此技術蝕刻而得之黑色微孔洞陣列,在僅添加陰離子型界面活性劑1 wt.% MA且蝕刻2 hr後,其反射率最低可降至約0.43%,而使用界面活性劑蝕刻穿孔之結構亦能有約0.4-0.5%之反射率。
    本研究證明了利用此技術已能局部取代乾式蝕刻之應用領域,並對於積體化微探針陣列之製作,或晶圓內連線之晶圓級堆疊封裝有極大的助益。且經此技術所製成之黑色微孔洞陣列結構,將有機會應用於太陽能電池之抗反射層,大幅提升太陽能電池之轉換效率。

    This research developed photo-assisted electrochemical etching (PAECE) system with low-cost light source for fabricating high-density silicon wafer through-holes array. This process is described as followed: high-density through-holes array in silicon is etched by photo-assisted electrochemical etching under various parameters, such as illumination, surfactants, and concentrations, then to improve the through-hole etching fabrication to obtain through-holes array with high etching rate and smooth etching sidewall. The developed technology will be promising for applications of integrated probe array and wafer-level package in the further. Its advantages are described as followed: low-cost system and fabrication, manufacture, high yield, and suitable for semiconductor process.
    Using PAECE technology to fabricate wafer through-holes array, we can get the structures with high etching rate and smooth etching sidewall through silicon substrate with thickness of 500 um when the etching time reached 16.7 hours. The smallest width of through-hole by PAECE is 21 um, and the highest aspect ratio is 17.7. The related experimental parameters are described as followed: illumination is 18000-32000 lux, chose surfactants are 1 wt.% DC-1, 1 wt.% MA, 2.5 wt.% H2O2 and 1 wt.% Alcohol. The black micro holes array fabricated by PAECE 2 hr with 1 wt.% MA has ultra-low reflectivity 0.43%, and reflectivity of through-holes array also has equal values about 0.4-05%.
    Results of this research proved that PAECE technology had been able to partially replace the dry etching technology. It has advantages for applications of integrated probe array and interconnection of wafer-level package. After PAECE fabrication, the black micro holes array will be applied to antireflective structure of solar cell to improve the efficiency obviously.

    摘要...............................I 總目錄...............................III 圖目錄...............................VI 表目錄...............................XIII 第一章 緒論...............................1 1.1 微機電系統簡介...............................2 1.2 電化學蝕刻技術簡介...............................5 1.3 太陽能電池之抗反射層...............................8 1.4 論文架構...............................9 第二章 文獻回顧與理論探討...............................10 2.1 高深寬比矽基微細加工技術...............................14 2.1.1濕式矽蝕刻技術...............................14 2.1.2乾式矽蝕刻技術...............................17 2.2 多孔矽在電解液中的電流-電壓( I-V )特性...............................23 2.3 電化學蝕刻之多孔矽成形機制...............................28 2.4 電化學掏空機制...............................40 2.5 太陽能電池抗反射層之表面粗化技術...............................42 2.6 微穿孔陣列可應用之方向...............................52 2.7 研究動機與目的...............................56 第三章 實驗方法與規劃...............................58 3.1 實驗規劃...............................58 3.1.1 電化學蝕刻之前製程...............................59 3.2 實驗裝置...............................64 3.3 實驗與量測設備...............................66 第四章 實驗結果與討論...............................77 4.1 光源照度對蝕刻深度及孔壁形貌的影響...............................77 4.2 不同界面活性劑與濃度對蝕刻深度及孔壁形貌的影響...............................84 4.2.1 陽離子型界面活性劑DC-1與DC-2之實驗結果...............................85 4.2.2 非離子型界面活性劑BR-1、BR-2與Triton-X之實驗結果...............................91 4.2.3 陰離子型界面活性劑MA、強氧化劑H2O2及有機界面活性劑Alcohol之實驗結果...............................99 4.3 兩劑混合型界面活性劑對蝕刻深度及孔壁形貌的影響...............................111 4.3.1 陽離子型界面活性劑DC-1與陰離子型界面活性劑MA之實驗結果...............................111 4.3.2 陽離子型界面活性劑DC-1與強氧化劑H2O2之實驗結果...............................115 4.3.3 陽離子型界面活性劑DC-1與有機界面活性劑Alcohol之實驗結果...............................118 4.3.4 陰離子型界面活性劑M A與強氧化劑H2O2之實驗結果...............................121 4.3.5 強氧化劑H2O2與有機界面活性劑Alcohol之實驗結果...............................124 4.3.6 陰離子型界面活性劑MA與有機界面活性劑Alcohol之實驗結果...............................127 4.4 光輔助電化學穿孔蝕刻與其形貌改善...............................130 4.4.1 一階段之光輔助電化學穿孔蝕刻...............................130 4.2.2 兩階段之光輔助電化學穿孔蝕刻...............................136 4.5 電化學蝕刻結構之反射率量測...............................145 4.6 研究結果與文獻之比較...............................157 第五章 結論...............................163 第六章 未來展望...............................165 參考文獻...............................167

    1. 楊啟榮, "微機電系統原理與應用", 國立臺灣師範大學課程講義 (2005).
    2. 楊啟榮 等人, "微機電系統技術與應用", 儀器科技研究中心, 第四章 (2007) .
    3. M. D. B. Charlton, H. W. Lau, and G. J. Parker, "High aspect ratio photo-assisted electro-chemical etching of silicon and its application for the fabrication of quantum wires and photonic band structures", IEE Colloquium on Microengineering Applications in Optoelectronics (1996) pp. 1-9.
    4. A. Satoh, "Formation of through-holes on silicon wafer by optical excitation electropolishing method", Japanese Journal of Applied Physics, Vol. 39 (2000) pp. 378-386.
    5. V. Lehmann and H. Föll, "Formation mechanism and properties of electrochemically etched trenches in n-type silicon", Journal of the Electrochemical Society, Vol. 137 (1990) pp. 653-658.
    6. V. Lehmann and U. Grüning, "The limits of macropore array fabrication", Thin Solid Films, Vol. 297 (1997) pp. 13-17.
    7. V. Lehmann, "The physics of macropore formation in low-doped n-type silicon", Journal of the Electrochemical Society, Vol. 140 (1993) pp. 2836-2843.
    8. V. Lehmann, "Porous silicon formation and other photo-electrochemical effects at silicon electrodes anodized in hydrofluoric acid", Applied Surface Science, Vol. 106 (1996) pp. 402-405.
    9. V. Lehmann, "Porous silicon-a new material for MEMS", Proc. of Micro Electro Mechanical System Workshop, California, USA (1996) pp. 1-6.
    10. http://www.ise.fhg.de/welcome-to-the-web-pages-of-the-fraunhofer-institute-for-solar-energy-systems-in-freiburg-germany/view?set_language=en
    11. A. Uhir, "Electrolytic shaping of germanium and silicon", Bell System Technical Journal, Vol. 35 (1956) pp. 333-347.
    12. V. Lehmann, R. Stengl, H. Reisinger, R. Detemple, and W. Theiss, "Optical shortpass filters based on macroporous silicon", Applied Physics Letters, Vol. 78 (2001) pp. 589.
    13. S. Rowson, A. Chelnokov, and J. M. Lourtioz, "Two-dimensional photonic crystals in macroporous silicon: From mid-infrared (10 um) to telecommunication wavelengths (1.3-1.5 um)", Journal of Lightwave Technology, Vol. 17 (1999) pp. 1989-1995.
    14. U. Grüninga, V. Lehmann, S. Ottow, and K. Busch, "Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 µm", Applied Physics Letters, Vol. 68 (1996) pp. 747.
    15. F. Müller, A. Birner, U. Gösele, V. Lehmann, S. Ottow, and H. Föll, "Structuring of macroporous silicon for applications as photonic crystals", Journal of Porous Material, Vol. 7 (2000) pp. 201.
    16. P. Roussel, V. Lysenko, B. Remaki, G. Delhomme, A. Dittmar, and D. Barbier, "Thick oxidised porous silicon layers for the design of a biomedical thermal conductivity microsensor", Sensor and Actuators A, Vol. 74 (1999) pp. 100-103.
    17. M. B. Ali, R. Mlika, H. B. Ouada, R. M’ghaïeth, and H. Maâref, "Porous silicon as substrate for ion sensors", Sensor and Actuators A, Vol. 74 (1999) pp. 123-125.
    18. S. Bastide, A. Albu-Yaron, S. Strehlke, and C. Lévy-Clément, "Formation and characterization of porous silicon layers for application in multicrystalline silicon solar cells", Solar Energy Materials & Solar Cells, Vol. 57 (1999) pp. 393-417.
    19. H. Ohji, S. Izuo, P. J. French, and K. Tsutsumi, "Pillar structures with a sub-micron space fabricated by macroporous-based micromachining", Sensor and Actuators A, Vol. 97-98 (2002) pp. 744-748.
    20. S. Izuo, H. Ohji, and P. J. French, "A novel electrochemical etching technique for n-type silicon", Sensors and Actuators A, Vol. 97 (2002) pp. 720-724.
    21. G. Barillaro, A. Nannini, and M. Piotto, "Electrochemical etching in HF solution for silicon micromachining", Sensors and Actuators A, Vol. 102 (2002) pp. 195-201.
    22. H. Ohji, P.J. French, and K. Tsutsumi, "Fabrication of mechanical in p-type silicon using electrochemical etching", Sensors and Actuators, Vol. 82 (2000) pp. 254-258.
    23. H. Ohji, P.J. Trimp, and P.J. French, "Fabrication of free standing structure using single step electrochemical etching in hydrofluoric acid", Sensors and Actuators, Vol. 73 (1999) pp. 95-100.
    24. A. Satoh, "Formation of through-holes on silicon wafer by optical excitation electropolishing method", Japanese Journal of Applied Physics, Vol. 39 (2000) pp. 378-386.
    25. K. J. Chao, S. C. Kao, C. M. Yang, M. S. Hseu, and T. G. Tsai, "Formation of high aspect ratio macropore array on p-type silicon", Electrochemical and Solid-State Letters, Vol. 3 (2002) pp. 489-492.
    26. K. Itoi, S. Kageyama, T. Suemasu, and T. Takizawa, "Conductive interconnections through thick Si substrates for 3D packaging", The fifteen IEEE international conference (2002) pp. 388-391.
    27. H.R. Robbins and B. Schwartz, "Chemical etching of silicon-I. The system HF, HNO3, H2O, and HC2C3O2", Journal of the Electrochemical Society, Vol. 106 (1959) pp. 505-508.
    28. H.R. Robbins and B. Schwartz, "Chemical etching of silicon-II. The system HF, HNO3, H2O, and HC2C3O2", Journal of the Electrochemical Society, Vol. 107 (1960) pp. 108-111.
    29. B. Schwartz and H. R. Robbins, "Chemical etching of silicon-III. A temperature study in the acid system", Journal of the Electrochemical Society, Vol. 108 (1961) pp. 365-372.
    30. G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, "Bulk Micromachining of Silicon", Proceedings of the IEEE, Vol. 86 (1998) pp. 1536-1551.
    31. M. Elwenspoek, "The form of etch rate minima in wet chemical anisotropic etching of silicon", Journal of Micromechanical and Microengineering, Vol. 6 (1996) pp. 405-409.
    32. B. Schwartz and H. R. Robbins, "Chemical etching of silicon", Journal of the Electrochemical Society, Vol. 123 (1976) pp. 1903-1909.
    33. A. F. Bogenschutz, W. Krusemark, K.H. Locherer, and W. Mussinger, "Activation energies in the chemical etching of semiconductors in HNO3-HF-CH3COOH", Journal of the Electrochemical Society: Solid State, Vol. 114 (1967) pp. 970-973.
    34. L. Walter, "Silicon microstructuring technology", Materials science and engineering, Vol. 17 (1996) pp. 7-17.
    35. D. B. Lee, "Anisotropic etching of silicon", Journal of Applied physics, Vol. 40 (1969) pp. 4569-4574.
    36. P. J. Hesketh, C. Ju, and S. Gowda, "Surface free energy model of silicon anisotropic etching", Journal of the Electrochemical Society, Vol. 140 (1993) pp. 1080-1084.
    37. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, "Anisotropic etching of crystalline silicon in alkaline solution-Part I. Orientation dependence and behavior of passivation layer", Journal of the Electrochemical Society, Vol. 137 (1990) pp. 3612-3626.
    38. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, "Anisotropic etching of crystalline silicon", Journal of the Electrochemical Society, Vol. 137 (1990) pp. 3626-3632.
    39. D. R. Ciarlo, "Corner compensation structures for (110) oriented silicon", IEEE Micro Robots and Teleoperators Workshop (1987) pp. 1-4.
    40. O. Powell and H B. Harrison, "Anisotropic etching of {100} and {110} planes in (100) silicon", Journal of Micromechanics and Microengineering, Vol. 11 (2001) pp. 217-220.
    41. G. Ensell, "Alignment of mask patterns to crystal orientation", Sensors and Actuators A, Vol. 53 (1996) pp. 345-348.
    42. M. Vangboy and Y. Bäcklund, "Precise mask alignment to the crystallographic orientation of silicon wafers using wet anisotropic etching", Journal of Micromechanics and Microengineering, Vol. 6 (1996) pp. 279-284.
    43. 鍾震桂 等人, "感應耦合電漿的矽非均性蝕刻技術", 第三屆奈米工程暨微系統技術研討會, Vol. 3 (1999) pp. 83-87.
    44. R. B. Bosch Gmbh, U.S. patents No.4855017, U.S. patents No.4784720, and Germany Patent No. 4241045C1 (1994).
    45. M. Hynes, H. Ashraf, J. K. Bhardwaj, J. Hopkins, I. Johnston, and J. N. Shepherd, "Recent advances in silicon etching for MEMS using the ASE process", Sensors and Actuators A, Vol. 74 (1999) pp. 13-17.
    46. J. K. Bhardwaj and H. Ashraf, "Advanced silicon etching using high density plasmas", SPIE, Vol. 2639 (1995) pp. 225.
    47. 楊啟榮 等人, "微系統類LIGA製程光刻技術", 科儀新知, Vol. 22 (2001) pp. 33-45.
    48. V. Lehmann and S. Ronnebeck, "The physics of macropore formation in low-doped p-type silicon", Journal of the Electrochemical Society, Vol. 146 (1999) pp. 2968-2975.
    49. R. L. Smith and S. D. Collins, "Porous silicon formation mechanisms", Journal of Applied Physics, Vol. 71 (1992) pp. 1-22.
    50. 吳浩青 等人, "電化學動力學", 科技圖書股份有限公司 (2001) pp. 179-183.
    51. X. Badel, "Electrochemically etched pore arrays in silicon for X-ray imaging detectors", Ph.D Thesis, The Royal Institute of Technology (2005) pp. 5-21.
    52. M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew, and A. G. Cullis, "An experimental and theoretical study of the formation and microstructure of porous silicon", Journal of Crystal Growth, Vol. 73 (1985) pp. 622-636.
    53. M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cullis, and J. D. Benjamin, "Microstructure and formation mechanism of porous silicon", Applied Physics Letters, Vol. 46 (1985) pp. 86-88.
    54. X. G. Zhang, S. D. Collins, and R. L. Smith, "Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution", Journal of the Electrochemical Society, Vol. 136 (1989) pp. 1561-1565.
    55. X. G. Zhang, "Mechanism of pore formation on n-type silicon", Journal of the Electrochemical Society, Vol. 138 (1991) pp. 3750-3756.
    56. T. Unagami, "Formation mechanism of porous silicon layer by anodization in HF solution", Journal of the Electrochemical Society, Vol. 127 (1980) pp. 476-483.
    57. R. L. Smith, S. F. Chuang, and S. D. Collins, "A theoretical model of the formation morphologies of porous silicon", Journal of Electronic Materials, Vol. 17 (1988) pp. 533-541.
    58. C. S. Solanki, R. R. Bilyalov, H. Bender, and J. Poortmans, "New approach for the formation and separation of a thin porous silicon layer", Physica Status Solidi, Vol. 182 (2000) pp.97-101.
    59. V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, and P. Panek, "Cost-effective methods of texturing for silicon solar cells", Solar Energy Materials and Solar Cells, Vol. 72 (2002) pp. 291-298.
    60. K. Tsujino and M. Matsumura, "Formation of a low reflective surface on crystalline silicon solar cells by chemical treatment using Ag electrodes as the catalyst", Solar Energy Material and Solar Cells, Vol. 90 (2006) pp. 1527-1532.
    61. J. S. Yoo, I. O. Parm, U. Gangopadhyay, Kyunghae Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, "Black silicon layer formation for application in solar cells", Solar Energy Material and Solar Cells, Vol. 90 (2006) pp. 3085-3093.
    62. B. C. Chakravarty, J. Tripathi, A. K. Sharma, R. Kumar, K. N. Sood, S. B. Samanta, and S. N. Singh, "The growth kinetics and optical confinement studies of porous Si for application in terrestrial Si solar cells as antireflection coating", Solar Energy Material and Solar Cells, Vol. 91 (2007) pp. 701-706.
    63. U. Gangopadhyay, S.K. Dhungel, P. K. Basu, S. K. Dutta, H. Saha, and J. Yi, " Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication", Solar Energy Material and Solar Cells, Vol. 91 (2007) pp. 285-289.
    64. C. T. Wu, F. H. Ko, and C. H. Lin, "Self-organized tantalum oxide nanopyramidal arrays for antireflective structure", Applied Physics Letters, Vol. 90 (2007) pp. 171911.
    65. K. Nishioka, S. Horita, K. Ohdaira, and H. Matsumura, "Antireflection subwavelength structure of silicon surface formed by wet process using catalysis of single nano-sized gold particle", Solar Energy Material and Solar Cells, Vol. 92 (2008) pp. 919-922.
    66. http://www.udel.edu/igert/pvcdrom/APPEND/
    67. http://www.udel.edu/igert/pvcdrom/APPEND/AM0AM1_5.xls
    68. M. A. Green, J. Zhao, A. Wang, and S. R. Wenham, "Very high efficiency silicon solar cells-science and technology", IEEE, Vol. 46 (1999) pp. 1940-1947.
    69. M. A. Green, "The future of crystalline silicon solar cells", Progress in Photovoltaics: Research and Applications, Vol. 8 (2000) pp. 127-139.
    70. M. A. Green, "Crystalline silicon photovoltaic cells", Advance Materials, Vol. 13 (2001) pp. 1019-1022.
    71. M. A. Green, "Crystalline and thin-film silicon solar cells: state of the art and future potential", Solar Energy, Vol. 74 (2003) 181-192.

    下載圖示
    QR CODE