簡易檢索 / 詳目顯示

研究生: 劉俊庚
Liu Chun-Keng
論文名稱: 探討模型與建模對於學生原子概念學習之影響
指導教授: 邱美虹
Chiu, Mei-Hung
學位類別: 博士
Doctor
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 405
中文關鍵詞: 原子模型建模
英文關鍵詞: atom, model, modeling
論文種類: 學術論文
相關次數: 點閱:186下載:109
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 模型(model)在科學理解上扮演非常重要的角色,它不僅作為科學現象的外在表徵,更是作為連結學校科學活動與真實科學之間的橋樑。本研究分為三個部分,首先,探討學生對於模型的認識與理解,以及學生如何利用模型來表徵所欲理解的現象、概念。其次,採取內容分析法對國、高中教科書「原子理論」單元進行分析,探究模型在我國教科書中所扮演的角色和功能,以及教科書是否具建模歷程的要素。最後,探討不同建模教學策略對於三組學生於原子概念學習之影響。研究結果顯示,彙整如下:
    1. 8和9年級學生對於模型之定義,著重於模型是具體的事物,模型是物體的複製品。10和11年級學生對於模型之認識則已慢慢地轉變為著重於模型的功能,並且認為模型不再是實體的複製品,模型亦可如想法等抽象的形式。
    2.學生對於模型認識之架構,分別是語意、本體論、認識論和方法論。語意部分為「實體關係」與「表徵形式」;本體論分為「模型呈現」、「變化關係」和「模型限制」;認識論分為「模型學習」與「模型觀點」;方法論則可分為「模型解釋與推理」和「模型檢驗與預測」。
    3. 8年學生對於問題或現象所使用之模型與表徵系統主要以具體形式或示意圖為主,學生所使用之模型表徵以「形態相似性」為主;9年級學生除使用具體形式的模型外,亦開始使用如化學方程式或物理公式來描述現象。10和11年級學生則受到其化學背景知識的增加與概念理解,其使用模型表徵已經會考量模型與其目標系統之間的結構性關係,如抽象形式的化學方程式、物理公式,或關係圖等。
    4.高中化學教科書完全符合良好模型特徵之比例偏低,顯示教科書內容以陳述科學事實為主,所使用模型著重於模型物件之呈現(完整性)(95.4%),實驗結果與理論運作之間的概念性解釋(概念性)(64.8%)與提供適當的圖像模型(具體性)(68.5%)則較為缺乏。
    5.大部分高中化學教科書著重於描述原子理論內容介紹,「模型描述與選擇」和「模型建立」得分較高(93分,72.7%;106分,82.8%),至於「模型效化」與「模型分析與評估」得分較低(66分,51.6%;48分,37.5%)。
    6.經過不同的教學活動後,類比建模組和電腦輔助建模組成績皆優於講述教學組,且原子概念問卷(II)後測亦達到統計上顯著差異(p = .027 < .05),此外,原子成就測驗達統計上顯著性差異(p = .000 < .005)。此外,三組學生於建模能力測驗之「模型選擇與描述」、「模型建立」、「模型分析與評估」和「平均建模能力」達統計之顯著差異(p = .047 < .05;p = .035 < .05;p = .027 < .05),惟「模型效化」、「模型調度」和「模型重建」等建模能力則未達統計上顯著之差異(p = .062 > .05;p = .135 > .05;p = .069 > .05)。
    7.分析三組學生於「原子概念問卷(II)後測」與「建模能力測驗」之Kendall’s tau相關係數,講述教學組未達顯著相關,類比建模組與電腦輔助建模組達高相關,換言之,透過類比建模教學模式除可以能提升學生的概念理解外,亦可以提升學生的建模能力。
    模型與建模在教學上扮演非常重要的角色。本研究認為建模能力是豐富科學學習的重要方式,另外,本研究亦主張模型與建模的了解亦將使學生發展後設認知的知識。

    Models play an important role in the understanding of science. They are not only to explicitly use external representation to express abstract scientific concepts and phenomena in the world, but they also bridge a gap between school scientific activities and real science. In order to investigate this aspect of science education, this study has three parts. First, this study investigates students’ conception about the nature of model, and how to they use different models to represent the phenomena or their conception. Second, this study is to adapt content analysis method to evaluate the characteristics of model, structure of atomic theory, and modeling processes in the selected textbooks in Taiwan. Finally, this study is to investigate the effectiveness of different modeling teaching strategies for teaching the atomic conceptions. The analysis results are shown in the following seven parts:
    1. For the definition of model, grade 8 and 9 students focus on models are the replicas of the specific things, and view as reality. Grade 10 and 11 students think model is not a reproduction, and can express ideas in abstract ways, such as conception.
    2. The framework of students’ conception about model includes four perspectives: semantics, ontology, epistemology and methodology. In semantics, students’ conceptions were about models that can be divided into: relationship of reality and type of representation. In ontology, appearing, changing the relation, and confine model within certain limits. Epistemology has two parts: learn through models, and view of model. In methodology, students’ conceptions were about the functions of model: explanation and reasoning of model, examine and anticipation of model.
    3. For question and phenomena, grade 8 students utilize model and representation which focus on the concrete type of model and diagram, student use the representation of model is similarity of shape. Grade 9 students not only utilize model and representation which also focus on the concrete type of model and diagram, but also can use chemical equation and physical formula to represent phenomena. Besides, Grade 10 and 11 students benefit from chemistry knowledge and conceptual understanding, and they will consider the structural relation between model and target system, such as chemical equation, physical formula, or relationship of diagram.
    4. The proportion of chemical textbooks which conformed to characteristics of good model is very low, this result shows most textbooks present factual knowledge, and the utility of model focus on appearance of model (complete)(95.4%), and little focus on the conceptual explanation of experiment result and theory application (conceptual)(64.8%) , and provide model of diagram suitably (correct)(68.5%).
    5. Most upper secondary chemistry textbooks contents emphasize atomic knowledge, and focus on model description and selection, and model construction (93 point, 72.7%;106 point, 82.8%), however, little on model validation and model analysis and evaluation (66 point, 51.6%;48 point, 37.5%) during the modeling processes were discussed.
    6. After different instruction, analogy modeling group and computer assisted modeling group perform better than the control group, and the post test indicates that there is a significant difference between the research groups (p=.027 < .05). Besides, the result of achievement test of the atomic conception also indicates there is a significant difference between the research groups. Also modeling ability test indicates there is a significant difference between the research groups in model description and selection, model construct, model analysis and evaluation, average means of model ability scores (p = .047 < .05; p = .035 < .05; p = .027 < .05), however, no significant differences were observed between the research groups in model validation, model deployment, and model reconstruction (p = .062 > .05;p = .135 > .05;p = .069 > .05).
    7. The results of Kendall’s tau correlation between the post test of questionnaire of atomic conceptions (II) and the test of modeling ability show the control group has no significant differences, and analogy modeling group and computer assisted modeling group have significant differences. In other words, not only can analogy modeling instruction and computer modeling instruction improve students’ understanding, but also they can improve students’ modeling ability.
    In sum, models and modeling has played an important role in teaching. Research suggests develop modeling ability are important ways of enhancing students’ learning science. Further we also argue that understanding of model and modeling enables students to develop metacognitive awareness of knowledge.

    第壹章 緒論 1 一、科學教育研究取向轉變之回顧 1 二、本研究概述 3 第一節 研究背景 4 一、迷思概念與概念改變研究 4 二、模型與建模教學研究 6 三、原子理論科學發展歷程與教科書分析 8 第二節 研究動機 11 一、重新審視模型研究 11 二、模型與建模在科學史與學習所扮演的角色 12 三、設計「原子」概念之建模教學 14 第三節 研究目的與問題 16 第四節 名詞釋義 20 一、模型 20 二、建模 20 三、以模型為基礎的建模教學 20 四、視覺化 21 第五節 研究範圍與限制 22 一、研究範圍 22 二、研究限制 22 第貳章 文獻探討 23 第一節 模型與模型認識 23 一、模型發展史 23 二、模型之定義 24 三、模型與理論之關係 25 四、模型與表徵之關係 30 五、模型與類比之關係 34 六、模型之分類 36 七、模型本質認識與觀點 42 八、教科書與模型之關係 47 第二節 建模與科學學習之關係 48 一、建模-思考具體化的方法 48 二、建模歷程與科學學習 50 三、影響學生建模能力之因素 59 四、建模與概念改變 60 第三節 以模型為基礎的建模教學 62 一、以模型為基礎的學習理論架構 62 二、以模型為基礎的建模與建模能力評估 64 三、建模教學策略之探討 67 第四節 原子與化學鍵概念之探討 71 一、原子理論之歷史發展 71 二、關於學生在原子與化學鍵概念之迷思 93 第五節 原子理論建模歷程分析 100 一、拉塞福原子理論建模歷程分析 100 二、波耳原子理論建模歷程分析 103 第參章 研究設計 109 第一節 研究對象與樣本 111 一、跨年級學生之模型認識 111 二、跨年級學生於原子概念之模型特徵與演變 112 三、建模教學 112 四、教科書之分析版本 113 第二節 研究工具 115 一、模型本質問卷 116 二、如何利用模型表徵 117 三、原子概念問卷(I) 118 四、原子概念問卷(II) 120 五、原子概念成就測驗 122 六、教科書分析 122 七、問題解決問卷 125 第三節 教學活動設計 126 一、教學目標與課程規劃 126 二、教學特點與異同比較 127 第四節 研究流程 135 第五節 資料處理與分析 137 一、學生模型認識與如何利用模型表徵 137 二、科學發展、教科書與學生之原子概念與建模歷程 138 三、不同建模教學策略學習成效之比較 139 第肆章 研究結果 143 第一節 學生對於模型的認識 143 一、跨年級學生對於模型本質的觀點 144 二、利用訪談方式學生對於模型的認識與理解 168 第二節 學生如何利用模型來表徵所欲理解的現象或概念 196 一、模型與表徵系統之關係 196 二、學生使用表徵系統的來源 207 三、影響學生模型選擇與判斷之因素 209 四、建立學生如何選擇模型之架構 217 第三節 「原子理論」之模型演變與建模歷程-教科書分析 219 一、國、高中教科書於「原子理論」模型與類別分析 219 二、高中化學教科書於「原子理論」單元內容分析 260 三、高中化學教科書於「原子理論」之建模歷程 267 第四節 跨年級學生於「原子理論」概念之模型比較 280 一、跨年級學生於原子概念測驗(I)之作答情形 280 二、跨年級學生模型發展與比較 289 第五節 不同建模教學策略對於學生原子概念學習之影響 293 一、原子概念問卷(II)前後測結果分析比較 293 二、學生原子概念心智模式之影響與改變 304 三、原子概念成就測驗結果分析與比較 311 四、「類比建模組」與「電腦輔助建模組」學生之學習過程記錄 319 五、小結 324 第六節 學生概念理解與建模能力之關係 326 一、不同教學策略對於學生建模能力之影響 326 二、學生「概念理解」與「建模能力」之關係分析 329 第伍章 結論與建議 331 第一節 結論 331 一、學生對於模型本質之認識 331 二、學生如何選擇適當的模型及其表徵形式 333 三、我國教科書於「原子理論」單元分析及其意涵 334 四、跨年級學生於「原子概念」之模型發展歷程 337 五、建模教學對於學生原子概念之影響 338 六、不同教學策略對於學生建模能力之影響 339 七、本研究之貢獻 341 第二節 建議 344 一、教學與課程設計 344 二、未來研究建議 346 參考文獻 中文部分 349 英文部分 352 附錄1:原子概念成就測驗評分標準 367 附錄2-1:國中教科書之模型特徵評量標準與範例說明 371 附錄2-2:高中教科書之模型特徵評量標準與範例說明 372 附錄3:高中教科書建模歷程評量標準與範例彙整表 374 附錄4-1:科學模型本質測驗問卷 376 附錄4-2:模型本質半結構訪談工具 388 附錄4-3:如何利用模型表徵半結構訪談工具 390 附錄5:原子概念測驗問卷(I) 391 附錄6:原子概念測驗問卷(II) 393 附錄7:原子概念成就測驗 401 附錄8:建模能力測驗-訪談題 405

    中文部分
    王玉侖(2004)。科學技術史。北京:中國人民大學出版社。
    王德勝和朱天娥(1992)。化學五千年。臺北市:曉園出版社。
    王澄霞和楊永華(1985)。中小學科學課程中「物質的粒子概念」之研究。師大學報,30,頁482-506。
    尹基勉(1999)。「原子結構」概念之建構式教學研究。國立臺灣師範大學化學研究所碩士論文(未出版)。
    李艷平和申先甲(2003)。物理學史教程。北京:科學出版社。
    吳大猷(1977)。量子論與原子結構。臺北:聯經出版事業公司。
    吳明珠(2008)。科學模型本質剖析:認識論面向初探。科學教育月刊,306,2-8。(轉載自論文發表於中華民國科學教育學術研討會,2007,高雄:國立高雄師範大學科學教育研究所)。
    周金城(2008)。探究中學生對科學模型的分類與組成本質的理解。科學教育月刊,306, 10-17。(轉載自論文發表於中華民國科學教育學術研討會,2007,高雄:國立高雄師範大學科學教育研究所)。
    邱美虹(2000)。概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
    邱美虹(2005)。臺灣地區中學生「粒子與化學平衡」概念之心智模式與成因之探討(IV)。行政院國家科學委員會專題研究計畫(計畫編號:NSC92-2511-S-003-010),未出版。
    邱美虹(2007)。化學教育中建模模式的研發與實踐-子計畫四:以認知師徒制探討建模能力與歷程對學生學習物質科學中「氧化與還原」之影響。行政院國家科學委員會專題研究計畫(計畫編號:NSC 95-2511-S-003-025-MY2),未出版。
    邱美虹(2008)。模型與建模能力之理論架構。科學教育月刊,306,2-9。(轉載自論文發表於中華民國科學教育學術研討會,2007,高雄:國立高雄師範大學科學教育研究所)。
    邱美虹和劉俊庚(2008)。從科學學習的觀點探討模型與建模能力。科學教育月刊,314,2-20。
    林靜雯和邱美虹(2005)。整合類比與多重表徵研究取向探究多重類比設計對兒童電學概念學習之影響。科學教育學刊,13(3),317-345。
    林靜雯和邱美虹(2008)。從認知/方法論之向度初探高中學生模型及建模歷程之知識。科學教育月刊,307, 9-14。(轉載自論文發表於中華民國科學教育學術研討會,2007,高雄:國立高雄師範大學科學教育研究所)。
    胡鏡寰、王忠烈和劉玉華(1990)。原子物理學。北京:北京師範大學出版社。
    范岱年譯(1996)。物理學與哲學:現代科學中的革命(海森堡著)。新竹:凡異文化事業有限公司。
    馬文蔚、唐玄之和周永平(1995)。物理學發展史上的里程碑。新竹:凡異文化事業有限公司。
    高道旭、葉秋塗和高進登譯(1972)。基本原子物理學(上冊)。臺北:大中國圖書公司。
    康軒出版社(2007)。自然與生活科技(2上)。臺北:康軒文教事業股份有限公司。
    教育部(1999)。高級中學課程標準。臺北:教育部。
    教育部(2003)。國民中小學九年一貫課程綱要。臺北:教育部。
    教育部(2006)。普通高級中學課程暫行綱要。臺北:教育部。
    教育部(2010)。普通高級中學課程綱要。臺北市:教育部。
    陳竹亭編(2008)。普通高級中學 化學(上)。臺北:泰宇出版股份有限公司。
    陳瑞麟(2003)。科學與世界之間:科學哲學論文集。臺北:學富文化事業有限公司。
    陳瑞麟(2004)。科學理論版本的結構與發展。臺北:臺大出版中心。
    郭奕玲、林木欣和沈慧君(1996)。近代物理發展中的著名實驗。新竹:凡異文化事業有限公司。
    趙匡華(1992):化學通史(上)。新竹:凡異文化事業有限公司。
    張志康(2009)。從概念改變理論探究建模教學對學生力學心智模式與建模能力之影響。國立臺灣師範大學科學教育研究所博士論文(未出版)。
    張志康和邱美虹(2009)。建模能力分析指標的發展與應用-以電化學為例。科學教育學刊,17(4),319-342。
    張延惠、林聖路和王傳奎(2009)。原子物理教程(第二版)。濟南:山東大學出版社。
    劉俊庚和邱美虹(2010a)。從模型觀點分析高中化學教科書中「原子理論」單元之模型特徵及其意涵。論文發表於第26屆中華民國科學教育學術研討會,花蓮。
    劉俊庚和邱美虹(2010b)。從建模觀點分析高中化學教科書中原子理論之建模歷程及其意涵。科學教育研究與發展季刊,59,23-52。
    賴俊文(2010)。探討建模教學對於八年級學生學習物質粒子概念之學習成效與建模能力之影響。國立臺灣師範大學科學教育研究所碩士論文(未出版)。
    賴俊文、邱美虹和劉俊庚(2010)。探討以動態模型為基礎的建模教學對於八年級學生學習物質粒子概念之影響。論文發表於第26屆中華民國科學教育學術研討會,花蓮。
    關洪(2000)。物理學史講座。新竹:凡異文化事業有限公司。

    英文部分

    AAAS. (1993). Benchmarks or Science Literacy. New York: Oxford University Press.
    Achinstein, P. (1968). Concepts of Science: A Philosophical Analysis. Maryland: The Johns Hopkins Press.
    Aegerter-Wilmsen, T., Janssen, F., Hartog, R., & Bisseling, T. (2005). Digital learning material for model building in molecular biology. Journal of Science Education and Technology, 14(1), 123-134.
    Andersson, B. (1990). Pupil’s conceptions of matter and its transformation (age 12-16). Studies in Science Education, 18, 53-85.
    Arabatzis, T. (1996). Rethinking the ‘discovery’of the electron. Studies in History and Philosophy of Modern Physics, 27, 405-435.
    Baird, D. (2004).Thing Knowledge. A Philosophy of Scientific Instruments. Berkeley and Los Angeles, California: University of California.
    Bar, V. (1989). Children’s views about the water cycle. Science Education, 73(4), 481-500.
    Bent, H. (1984). Uses (and abuses) of models in teaching chemistry. Journal of Chemical Education, 61, 774-777.
    Bigg, C. (2008). Evident atoms: visuality in Jean Perrin’s Brownian motion research. Studies in History and Philosophy of Science, 39, 312-322.
    Bliss, J. (1994). From mental models too modelling. In H. Mellar, J. Bliss, R. Boohan, J. Ogborn, & C. Tompsett (eds.), Learning with artificial worlds: computer based modelling in the curriculum (pp. 27-32). Hong Kong: Graphicraft Typesetters.
    Briggs, M., & Bodner, G. (2005). A model of molecular visualization. In J. K. Gilbert (ed.), Visualization in Science Education (pp. 61-72). Netherlands: Springer.
    Bohr, N. (1913). On the Constitution of Atoms and Molecules, Philosophical Magazine, 26, 1-25.
    Bohr, N. (1923). The structure of the atom (Nobel Lecture, delivered December 11, 1922). Nature, 1-16.
    Boo, H. K. (1998). Students’ understandings of chemical bonds and the energetics of chemical reactions, Journal of Research in Science Teaching, 35(5), 569–581.
    Boo, H. K., & Watson, J. R. (2001). Progression in high school students’ (aged 16-18) conceptualizations about chemical reactions in solution. Science Education, 85, 568-585.
    Buckley, B. C. & Boulter, C. J. (2000). Investigating the Role of Representations and Expressed Models in Building Mental Models. In J. K. Gilbert and C.J. Boulter(eds.), Developing Models in Science Education (pp.119-135.) Netherlands: Kluwer Academic Publishers.
    Champagne, A. B., Klopfer, L. E., & Anderson, J. H. (1980). Factors influencing the learning of classical mechanics. American Journal of Physics, 48, 1074-1079.
    Chi, M. T. H. (1992). Conceptual change within and across ontological categories: implications for learning and discovery in science. In R. Giere (ed.), Cognitive models of science: Minnesota studies in the philosophy of science (pp. 129-186). Minneapolis: University of Minnesota Press.
    Chi, M. T. H., & Roscoe, R. D. (2002). The process and challenges of conceptual change. In M. Limon & L. Mason (eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 3-27). Dordrect, The Netherlands: Kluwer Academic Publishers.
    Chi, M. T. H., Slotta, J. D., & de Leeuw, N. A. (1994). From things to processes: a theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27-43.
    Chiu, M. H. (2008). Research And Instruction-Based/Oriented Work (RAINBOW) for conceptual change in science learning – an example of students’ understanding of gas particles. Paper present at the NARST 2008, March 29 - April 2, Baltimore, U.S.A.
    Chiu, M. H., & Liu, C. K. (2008). Designing research instrument for investigating students' conceptions about models. Paper presented at 20th International Conference on Chemical Education, Mauritius.
    Chittleborough, G., & Treagust, D. F. (2007). The modeling ability of non-major chemistry students and their understanding of the sub-microscopic level. Chemistry Education Research and Practice, 8(3), 274-292.
    Clement, J. (1989). Learning via model construction and criticism. In G. Glover, R. Ronning, & C. Reynolds (eds.), Handbook of creativity: assessment, theory and research (pp. 341-381). New York : Plenum.
    Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 22(9), 1041-1053.
    Coll, R. K., & Treagust, D. F. (2001). Learners’ mental models of chemical bonding. Research in Science Education, 31, 357-382.
    Coll, R. K., & Taylor, N. (2002). Mental models in chemistry: senior chemistry students’ mental models of chemical bonding. Chemistry Education: Research and Practice in Europe, 3(2), 175-184.
    Collins, A., & Gentner, D. (1987). How people construct mental models. In D. Holland & N. Quinn (eds.), Cultural models in thought and language (pp. 243-265). Cambridge, UK: Cambridge University Press.
    Cook, M., Wiebe, E. N. & Carter, G. (2008). The influence of prior knowledge on viewing and interpreting graphics with macroscopic and molecular representations. Science Education, 92(5), 848-867.
    Craver, C. F. (2006). When mechanistic models explain. Synthese, 153, 355-376.
    Crawford, B. A., & Cullin, M. F. (2004). Supporting prospective teachers’ conception of modeling in science. International Journal of Science Education, 26(11), 1379-1401.
    Cros, D., Chastrette, M. & Fayol, M. (1988). Conceptions of second-year university students of some fundamental notions in chemistry. International Journal of Science Education, 10 (3), 331-336.
    Dalmedico, A. D. (2007). Models and simulations in climate change: history, epistemological, anthropological, and political aspects. In Angela N. H. Creager, E. Lunbeck, & M. N. Wise (eds.). Science Without Laws (pp.125-156). London: Duke University Press.
    de Berg, K. C., & Treagust, D. F. (1993). The presentation of gas properties in chemistry textbooks and as reported by science teachers. Journal of Research in Science Teaching, 30(8), 871-882.
    de Posada, J. M. (1997). Conceptions of high school students concerning the internal structure of metals and their electric conduction: Structure and evolution. Science Education, 81(4), 445-467.
    Driver, R. & Easley, J. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education, 5, 61-84.
    Duit, R., & Treaqust, D. (2003). Conceptual change: a powerful framework for improving science teaching and learning. International Journal of Science Education, 25, 671-688.
    Frederiksen, J.. R., & White, B. Y. (1998). Teaching and learning generic modeling and reasoning skills. Journal of Interactive Learning Environments, 55, 33-51.
    Frigg, R. (2009). Models and fiction. Synthese, DOI 10.1007/s11229-009-9505-0.
    Geiger, H., & Marsden, E. (1909). On a diffuse reflection of the -particles. Proceedings of the Royal Society, 82, 495-500.
    Geiger, H., & Marsden, E. (1913). The laws of defluxion of  particles through large angles. Philosophical Magazine, 25, 604-623.
    Gericke, N., & Hagberg, M. (2009). Conceptual incoherence as a result of the use of multiple history models in school textbooks. Research in Science Education. Doi: 10.1007/s11165-009-9136-y.
    Giere, R. N. (1994). The cognitive structure of scientific theories. Philosophy of Science, 61, 276-296.
    Giere, R. N. (1988). Explaining Science-A Cognitive Approach. London: University of Chicago Press.
    Giere, R. N. (1999). Using models to represent reality. In L. Magnani, N. J. Nersessian, & P. Thagard (eds.), Model-based reasoning in scientific discovery (pp. 41-57). New York: Kluwer.
    Giere, R. N. (2004). How models are used to represent reality. Philosophy of Science, 71, 742-752.
    Giere, R. N. (2010). An agent-based conception of models and scientific representation. Synthese, 172, 269-281.
    Gilbert, S. W. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73-79.
    Gilbert, J. K. (1993). Models and modeling in science education. Hatfield: The Association for Science Education.
    Gilbert, J. K. (2005). Visualization: a metacognitive skill in science and science education. In J. K. Gilbert (ed.), Visualization in Science Education (pp. 9-27). Netherlands: Springer.
    Gilbert, J. K., & Buckley, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891-894.
    Gilbert, J. K., Boulter, C., J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert and C. J. Boulter (eds.) Developing Models in Science Education (pp. 3-17). Dordrecht/Boston/London: Kluwer Academic Publishers.
    Gilbert, J. K. Boulter, C., & Rutherford, M. (1998). Models in explanations, part 1: horses for courses? International Journal of Science Education, 20(1), 83-97.
    Gilbert, J. K., Osborne, R. J., & Fensham, P. J. (1982). Children’s science and its consequences for teaching. Science Education, 66(4), 623-633.
    Gilbert, J. K., & Treagust, D. F. (2009). Introduction: macro, submicro and symbolic representations and the relationship between them: key models in chemical education. In J. K. Gilbert, & D. Treagust (eds.). Multiple representations in Chemical Education (pp.1-8). Dordrecht: Springer.
    Glynn, S. M., & Duit, R. (1995). Learning science meaningfully: constructing conceptual models. In S. M. Glynn & R. Duit (eds.), Learning science in the schools: Research reforming practice. New Jersey: Lawrence Erlbaum Associates.
    Glynn, S. M. (2007). Methods and strategies: teaching with analogies. Science & Children, 44(8), 52-55.
    Greca, I. M., & Moriea, M. A. (2000). Mental model, conceptual models, and modelling. International Journal of Science Education, 22(1), 1-11.
    Greca, I. M., & Moriea, M. A. (2001). Mental, physical, and mathematical models in the teaching and learning of physics. Science Education, 86, 106-121.
    Griffiths, A. K., & Preston, K. R. (1992). Grade-12 students’ misconceptions relating to fundamental characteristics of atoms and molecules. Journal of Research in Science Teaching, 29(6), 611-628.
    Grosslight, L., Unger, C., Jay, E., & Smith, C. (1991). Understanding models and their use in science conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799-822.
    Halloun, I. (1996). Schematic modeling for meaningful learning of physics. Journal of Research in Science Teaching, 26(11), 1365-1378.
    Halloun, I. A. (2006). Modeling Theory in Science Education. Netherlands: Springer.
    Halloun, I. A., & Hestenes, D. (1987). Modeling instruction in mechanics. American Journal of Physics, 55(5), 455-462.
    Harrison, A. G. (2001). How do teachers and textbook writers model scientific ideas for students? Research in Science Education, 31, 401-435.
    Harrison, A. G., & Treagust, D. (1996). Secondary students’ mental models of atoms and molecules: Implications for teaching chemistry. Science Education, 80(5), 509-534.
    Harrison, A. G., & Treagust, D. F. (2000). Learning about atom, molecules, and chemical bonds: a case study of multiple-model use in grade 11 chemistry. Science Education, 84, 352-381.
    Hart, C. (2008). Models in physics, models for physics learning, and why the distinction may matter in the case of electric circuits. Research in Science Education, 38, 529-544.
    Hartmann, S. (1995). Models as a tool for theory construction: some strategies of preliminary physics. Poznan Studies in the Philosophy of Science and the Humanities, 44, 49-67.
    Hartmann, S. (1999). Models and stories in Hadron physics. In M. S. Morgan & M. Morrison (eds.), Models as mediators: perspectives on natural and social science (pp. 326–346). New York : Cambridge University Press
    Hartmann, S. (2008). Modeling in philosophy of science. In M. Frauchiger & W. K. Essler (eds.), Representation, Evidence, and Justication: Themes from Suppes (Lauener Library of Analytical Philosophy; vol. 1) (pp. 95-122). Frankfurt: ontos Verlag.
    Hentschel, K. (2009). Atomic Models, Nagaoka's Saturnian Model. In D. Greenberger, K. Hentschel and F. Weinert (eds.), Compendium of Quantum Physics (pp.22-23). Berlin Heidelberg: Springer.
    Hestenes, D. (1987). Toward a modeling theory of physics instruction. American Journal of Physics, 55(5), 440-454.
    Hettema, H. (1995). Bohr’s theory of the atom 1913-1923: a case study in the progress of scientific research programmes. Studies in History and Philosophy of Modern Physics, 26, 307-323.
    Hodson, D. (1992). In search of a meaningful relationship: an explanation of some issues relating to integration in science and science education. International Journal of Science Education, 14, 541-562.
    Hogan, K., & Thomas, D. (2001). Cognitive comparisons of students’ systems modeling in ecology. Journal of Science Education and Technology, 10, 75-96.
    Hughes, R. I. G. (1997). Models and representation. Philosophy of Science, 64, 325-336.
    Jackson, J., Dukerich, L., & Hestenes, D. (2008). Modeling instruction: an effective model for science education. Science Educator, 17(1), 10-17.
    Johnson-Laird, P. N. (1983). Mental models. Cambridge, MA: Cambridge University Press.
    Johnstone, A. H. (1993). The development of chemistry teaching: a changing response to changing demand. Journal of Chemical Education, 70, 701-705.
    Jonassen, D., Strobel, J. & Gottdenker, J. (2005). Model building for conceptual change. Interactive Learning Environments, 13, 15-37.
    Jungck, J., & Calley, J. (1985). Strategic simulations and post-socratic pedagogy: constructing computer software to develop long-term inference through experimental inquiry. American Biology Teacher, 47, 11-15.
    Justi, R., & Gilbert, J. K. (2000). History and philosophy of science through models: some challenges in the case of ‘the atom’. International Journal of Science Education, 22(9), 993-1009.
    Justi, R., & Gilbert, J. K. (2002). Modelling, teachers’ views on the nature of modeling, and implications for the education of modelers. International Journal of Science Education, 24(4), 369-387.
    Justi, R., & Giblert, J. K. (2002). Philosophy of chemistry in university chemical education : the case of models and modelling. Foundations of Chemistry, 4, 213-240.
    Justi, R. S., & Gilbert, J. K. (2003). Teachers’ view on the nature of models. International Journal of Science Education, 25(11), 1369-1386.
    Justi, R., Gilbert, J. K., & Ferreira, P. F. M. (2009). The application of a ‘model of modeling’ to illustrate the importance of metavisualisation in respect of three types of representation. In J. K. Gilbert, & D. Treagust (eds.), Multiple representations of Chemical Education (pp. 285-307). Netherlands: Springer.
    Kalkanis, G., Hadzidaki, P., & Stavrou, D. (2003). An instructional model for a radical conceptual change towards quantum mechanics concepts. Science Education, 87, 257-280.
    Kesidou, S., & Roseman, J. E. (2002). How well do middle school science programs measure up? Findings from project 2061’s curriculum review. Journal of Research in Science Teaching, 39,522-549.
    Klein, P. D. (2006). The challenges of scientific literacy: from the viewpoint of second-generation cognition. International Journal of Science Education, 28(2-3), 143-178.
    Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34, 349-968.
    Kuhn, T. (1962). The Structure of Scientific Revolutions. Chicago: The University of Chicago Press.
    Liu, C. K., & Chiu, M. H. (2010). Modeling process of structure of the atom and its implications for chemistry textbooks. Paper presented at ASERA 2010, Australia, Sydney.
    Liu, C. K., Lai, C. W., & Chiu, M. H. (2009). Learning the atomic model through model-centered and modeling instruction. Paper presented at ESERA 2009, Istanbul, Turkey.
    Lopes, J. B. & Costa, N. (2007). The evaluation of modeling competences: difficulties and potentials for the learning of the science. International Journal of Science Education, 29(7), 811-851.
    Maia, P. F., & Justi, R. (2009). Learning of chemical equilibrium through modelling-based teaching. International Journal of Science Education, 31(5), 603-630.
    Mayer, R. E. (1989). Models for understanding. Review of Educational Research, 59, 43-64.
    McCloskey, M., Caramazza, A., & Green, B. (1980). Curvilinear motion in the absence of external forces: naïve beliefs about the motion of objects. Science, 210, 1139-1141
    Morgan, M. & Morrison, M. (1999). Models as mediators. Cambridge: Cambridge University Press.
    Moyer, W. A., & Mayer, W. V. (1985). A Consumer’s guide to biology textbooks 1985. Washington, DC: People for The American Way.
    Nagaoka, H. (1904). Kinetics of a system of particles illustrating the line and the band spectrum and the phenomena of radioactivity. Philosophical Magazine, 6, 445-455.
    Nahum, T. L., Mamlok-Naaman, R., Hofstein, A., & Krajcik, J. (2007). Developing a new teaching approach for the chemical bonding concept aligned with current scientific and pedagogical knowledge. Science Education, 91, 579-603.
    Nakhleh, M. B. & Samarapungavan, A. (1999). Elementary school children’s beliefs about matter. Journal of Research in Science Teaching, 36(7), 777-805.
    Nakiboglu, C. (2003). Instructional misconceptions of Turkish prospective chemistry teachers about atomic orbitals and hybridization. Chemistry Education: Research and Practice, 4(2), 171-188.
    National Research Council (1996). National Science Education Standards. Washington, DC: National Academy.
    Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In L. Magnani, N. J. Nerssian, & P. Thagard (eds.), Models are used to represent reality. New York: Kluwer Academic Publishers.
    Niaz, M. (1998). From cathode rays to alpha particles to quantum of action: a rational reconstruction of structure of the atom and its implications for chemistry textbooks. Science Education, 82, 527-552.
    Niaz, M. (2009). Foundations of Modern Atomic Theory: Thomson, Rutherford, and Bohr. In M. Niaz (ed), Critical Appraisal of Physical Science as a Human Enterprise: Dynamics of Scientific Progress (pp. 75-95). Netherlands: Springer.
    Niaz, M. & Coştu, B. (2009). Presentation of atomic structure in Turkish general chemistry textbooks. Chemistry Education Research and Practice, 10, 233-240.
    Niaz, M., & Rodríguez, M. A. (2001). Do we have to introduce history and philosophy of science or is it already ‘inside’ chemistry. Chemistry Education: Research and Practice in Europea, 2, 159-164.
    Nicoll, G. (2001). A report of undergraduates’ bonding misconceptions. International Journal of Science Education, 23(7), 707-730.
    Niss, M. (2009). Metamodelling messages conveyed in five statistical mechanical textbooks from 1963 to 2001. International Journal of Science Education, 31(5), 697-719.
    Novick, S., & Nussbaum, J. (1981). Pupils’ understanding of the particulate nature of matter: A cross-age study. Science Education, 65(2), 187-196.
    NSC. (1996). National Science Education Standards. Washington: National Academy Press.
    Ogan-Bekiroglu, F. (2007). Effects of model-based teaching on pre-service physics teachers’ conceptions of the moon, moon phases, and other lunar phenomena. International Journal of Science Education, 29(1), 1-39.
    Ogborn, J. (1994). Overview: the nature of modelling. In H. Mellar, J. Bliss, R. Boohan, J. Ogborn, & C. Tompsett (eds.), Learning with artificial worlds: computer based modelling in the curriculum (pp.11-15). Hong Kong: Graphicraft Typesetters.
    Ogilvie, J.F., (1990) The Nature of the Chemical Bond - 1990, Journal of Chemical Education, 67(4), 280-289
    Oreskes, N. (2007). From scaling to simulation: changing meanings and ambitions of models in geology. In Angela N. H. Creager, E. Lunbeck, & M. N. Wise (eds.). Science Without Laws (pp. 93-124). London: Duke University Press.
    Peterson, R. F., & Treagust, D. F. (1989). Development and application of a diagnostic instrument to evaluate grade-11 and –12 students’ concepts of covalent bonding and structure following a course of instruction. Journal of Research in Science Teaching, 26(4), 301-314.
    Perovic, S. (2006). Schrodinger’s interpretation of quantum mechanics and the relevance of Bohr’s experimental critique. Studies in History and Philosophy of Modern Physics, 37, 275-297.
    Pines, A. L., & West, L. L. H. T. (1986). Conceptual understanding and science learning: an interpretation of research within a source of knowledge framework. Science Education, 70(3), 583-604.
    Pinto, G. (1998). Using balls from different sports to model the variation of atomic sizes. Journal of Chemical Education, 75(6), 725-726.
    Posner, G.J., Strike, K.A., Hewson, P.W., & Gertzog, W.A. (1982). Accommodation of ascientific conception: Towards a theory of conceptual change. Science Education, 66, 211-227.
    Ramadas, J. (2009a). Visual and spatial modes in science learning. International Journal of Science Education, 31(3), 300-318.
    Rea-Ramirez, M. A., Clement, J., & Nunez-Oviedo, M. C. (2008). An instructional model derived from model construction and criticism theory. In J. J. Clement & M. A. Rea-Ramirez (eds.), Model based learning and instruction in science (pp. 23-43). Netherlands: Springer.
    Robinson, W. R. (2000). Learning about atoms, molecules, and chemical bonds: a case study of multiple-model use. Journal of Chemical Education, 77, 1110-1111.
    Rodríguez, M. A., & Niaz, M. (2004). A reconstruction of structure of the atom and its implications for general physics textbooks: a history and philosophy of science perspective. Journal of Science Education and Technology, 13, 409-424.
    Rubin, R. L., & Norman, J. T. (1992). Systematic modeling versus the learning cycle: comparative effects on integrated science process skill achievement. Journal of Research in Science Teaching, 29(7), 715-727.
    Rutherford, E. (1911). The scattering of α and β particles by matter and the structure of the atom. Philosophical Magazine, 6, 669-688.
    Rutherford, E. (1914). The structure of the atom. Philosophical Magazine, 27, 488-498.
    Saari, H., & Viiri, J. (2003). A research-based teaching sequence for teaching the concept of modeling to seventh-grade students. International Journal of Science Education, 25(11), 1333-1352.
    Sanchez, D., & Valcarcel, M. V. (1999). Science teachers’ views and practices in planning for teaching. Journal of Research in Science Education, 36, 493-513.
    Schwarz, C. V. & White, B. Y. (2005). Metamodeling knowledge: developing students’ understanding of scientific modeling. Cognition and Instruction, 23(2), 165-205.
    Sensevy, G., Tiberghien, A., Sylvain Laube, J. S., & Griggs, P. (2008). An epistemological approach to modeling: cases studies and implications for science teaching. Science Education, 92, 424-446.
    Seth, S. (2008). Crafting the quantum: Arnold Sommerfeld and the older quantum theory. Studies in History and Philosophy of Science, 39, 335-348.
    Seth, S. (2009). Zweideutigkeit about ‘‘Zweideutigkeit’’: Sommerfeld, Pauli, and the methodological origins of quantum mechanics. Studies in History and Philosophy of Science, doi:10.1016/j.shpsb.2009.06.005.
    Shayer, M., & Wylam, H. (1981). The development of the concepts of heat and temperature in 10-13 year-olds. Journal of Research in Science Teaching, 18(5), 419-434.
    Shen, J., & Conferey, J. (2007). From conceptual change to transformative modeling: a case study of an elementary teacher in learning astronomy. Science Education, 91, 948-966.
    Siegel, S., & Castellan, N. J. J. (1989). Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill Book Company.
    Silva, C. C. (2007). The role of models and analogies in the electromagnetic theory: a historical case study. Science & Education, 16, 835-848.
    Sins, P. H. M., Savelsbergh, E. R., & van Joolingen, W. R. (2005). The difficult process of scientific modeling: an analysis of novices’ reasoning during computer-based modeling. International Journal of Science Education, 14(18), 1695-1721.
    Spangenburg, R., & Moser, D. K. (1993). The history of science from the ancient Greeks to the scientific revolution. New York: Facts On File books.
    Stratford, S., Krajcik, J., & Soloway, E. (1998). Secondary students’ dynamic modeling processes: analyzing, reasoning about, synthesizing, and testing models of stream ecosystems. Journal of Science Education and Technology, 7(3), 215-234.
    Strike, K.A. & Posner, G.J. (1992). A revisionist theory of conceptual change. In Duschl, R. & Hamiltonn, R. (Eds.), Philosophy of Science, Cognitive Psychology and Educational Theory and Practice (pp. 147-176). Albany, N.Y: State University of New York Press.
    Suárez, M. (2002). An inferential conception of scientific representation. Paper presented at PSA 2002, http://philsci-archive.pitt.edu/.
    Suárez, M. (2003). Scientific representation: against similarity and isomorphism. International Studies in the Philosophy of Science, 17(3), 225-244.
    Tan, K-C. D., & Treagust, D. F. (1999). Evaluating students’ understanding of chemical bonding, School Science Review, 81(294), 75-81.
    Taber, K. S. (2001). Shifting sands: a case study of conceptual development as competition between alternative conceptions. International Journal of Science Education, 23(7), 731-753.
    Taber, K. S. (2001). When the analogy breaks down: modeling the atom on the solar system. Physics Education, 36, 222-226.
    Taber, K. S. (2002). Compounding quanta: probing the frontiers of student understanding of molecular orbitals. Chemistry Education: Research and Practice in Europe, 3(2), 159-173.
    Taber, K. S. (2005). Learning quanta: barriers to stimulating transitions in student understanding of orbital ideas. Science Education, 89, 94-116.
    Taber, K. S., & Coll, R. (2002). Bonding. In J. K. Gilbert, O. D. Jong, R. Justy, D. F. Treagust, & J. H. Van Driel (eds.), Chemical education: towards research-based practice (pp. 213-234). Dordrecht: Kluwer.
    Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.
    Thomson, J.J. (1897). Cathode rays. Philosophical Magazine, 44, 293–316.
    Tiberghien, A. (1994 ). Modeling as a basis for analyzing teaching-learning situations. Learning & Instruction, 4, 71-87.
    Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368.
    Tsaparlis, G., & Papaphotis, G. (2002). Quantum-chemical concepts: are they suitable for secondary students. Chemistry Education: Research and Practice in Europe, 3(2), 129-144.
    Tsaparlis, G., & Papaphotis, G. (2009). High-school students’ conceptual difficulties and attempts at conceptual change: the case of basic quantum chemical concepts. International Journal of Science Education, 31(7), 895-930.
    Tsui, C. Y. & Treagust, D. F. (2003). Genetics reasoning with multiple external representations. Research in Science Education, 33, 111-135.
    Tyson, L. M., Venville, G. J., Harrison, A. L., & Treagust, D. F. (1997). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81, 387-404.
    Uttal, D. H., O’Doherty, K. (2008). Comprehending and learning from ‘visualizations’: a developmental perspective. In J. K. Gilbert et al., (eds.), Visualization: Theory and Practice in Science Education (pp. 53-72). Netherlands: Springer.
    Van Driel, J. H. & Verloop, N. (1999). Teachers’ knowledge of models and modeling in science. International Journal of Science Education, 21, 1141-1153.
    Van Driel, J. H. & Verloop, N. (2002). Experienced teachers’ knowledge of teaching and learning of models and modeling in science education. International Journal of Science Education, 24(12), 1255-1272.
    van Someren, M. W. Boshuizen, H. de Jong, T., & Reimann, P. (1997). Introduction, In M. W. van Someren, P. Reimann, H. P. A. Boshuizen, & T. de Jong (eds.), Learning with multiple representations (pp. 1-5). Amsterdam: Elsevier.
    Vorms, M. (2008). Models and formats of representation. In British Society for the Philosophy of Science, . Conférence annuelle de la BSPS, 5 et 6 juillet 2007, Bristol (Royaume-Uni).
    Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4, 45-69.
    Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24(4), 535-585.
    Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on alternatives conceptions in science. In D. L. Gabel (Ed.), Handbook of research on science teaching and learning. New York: Macmillan.
    Wayman, P. A. (1998). Stoney’s electron. Europhysics News, 28, 159.
    Wells, M., Hestenes, D., & Swackhamer, G. (1995). A modeling method for high school physics instruction. American Journal of Physics, 63, 606-619.
    Zhang, B., Liu, X. & Krajcik, J. S. (2006). Expert models and modeling processes associated with a computer-modeling tool. Science Education, 90, 579-604.
    Zeeman, P. (1897). The effect of magnetization on the nature of light emitted by a substance. Nature, 55, 347.

    下載圖示
    QR CODE