研究生: |
葉冠甫 Ye, Guan-Fu |
---|---|
論文名稱: |
氣相層析/音哨檢氣法對發酵製程中產生氣體之即時偵測法的研究 Online monitoring of the concentration levels of gases during fermentation process by gas chromatography/whistle detection technique |
指導教授: |
林震煌
Lin, Cheng-Huang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 微型發音哨 、氣相層析儀 、發酵 、LabVIEW 、乙醇 、靜電紡織技術 |
英文關鍵詞: | milli-whistle, gas chromatography, fermentation, LabVIEW, ethanol, electrostatic spinning technology |
論文種類: | 學術論文 |
相關次數: | 點閱:158 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用微型發音哨,作為氣相層析儀的偵測器,藉由麥克風接收不同氣體經過發音哨時頻率的變化,透過音效卡加以記錄。當氣相層析毛細管柱之載流氣體與待分析的氣體混合後,因壓力差快速通過微型發音哨而發出不同頻率的聲響。即時的頻率變化量可藉由LabVIEW(Laboratory Virtual Engineer Workbench)程式同步進行傅立葉轉換,以獲得即時單一頻率。將此頻率變化對時間作圖,可得一即時層析音頻圖譜。本實驗便是依憑此音頻變化層析圖譜來進行實驗數據的即時分析。
為了提高發酵製醇的效率,本研究首次將學名為Saccharomyces cerevisiae的酵母菌株,以靜電紡織技術,將酵母菌包覆在聚左旋乳酸 (poly-L-lactide;PLLA) 的微管陣列薄膜中。酵母菌於室溫下約20小時會從106/mL 生長至108/mL,並於36小時後,生長至穩定。薄膜對酵母菌的活性不會有影響。使用包菌纖維可以解決發酵之後,乙醇溶液中移菌的困難步驟。再者,包菌纖維還可以回收持續使用,降低製造乙醇的成本。
本實驗使用自組裝電磁閥注射裝置,將發酵液放入注射裝置的樣品槽內,並將已包覆酵母菌的纖維共同置入發酵液中進行發酵。利用程式控制電磁閥,將發酵過程所產生乙醇的揮發氣體及二氧化碳等,以5分鐘的間隔,自動注入到毛細管柱中進行分離與記錄。實驗結果顯示,使用本實驗裝置,可以即時檢測並追蹤發酵程度,實驗過程可長達4日且完全自動化。根據頻率的變化量,可以即時偵測當下發酵液中乙醇的揮發氣體的濃度,並以其蒸氣壓判定溶液中乙醇的濃度。以1克的葡萄糖為起始物,用~106株酵母菌進行發酵時,在溫度28度之下,24小時後可以產生約0.12克的乙醇,並釋放出約20 mL的二氧化碳。三天發酵之中,合計生產了約0.43克的乙醇,並釋放出約41 mL的二氧化碳。將此包菌纖維進行第二次實驗,亦得到相同的結果,顯示本方法具有良好的再現性。
This study was conducted to a general understanding of the use of a milli-whistle as a gas chromatography (GC) detector in gas analysis.The milli-whistle is connected to the outlet of a GC capillary, and when the eluted gases and the GC carrier gas pass through it, a sound with a fundamental frequency is produced. The sound wave can be picked up by a microphone, and after a fast Fourier transform, the online data obtained for frequency-change vs. retention time constitute a new method for detecting gases with LabVIEW(Laboratory Virtual Engineer Workbench).In order to improve the efficiency of fermentation, in this study, yeast strain, Saccharomyces cerevisiae, using electrostatic spinning technology coated inside to the PLLA (poly-L-lactide; PLLA) microtubule arrays film. Yeast activated in film will not be affected. The film can be recycled and continue to use, reduce the cost of making ethanol. In this study, the fermentation broth and yeast that has been coated inside to fibers put into the container together to ferment. Using of program control self-assembled solenoid valve, the fermentation process produces ethanol and carbon dioxide vapors, etc., at 5-minute intervals, automatically injected into the capillary column to separate and record. Experimental results show that the use of our developed device, we can immediately detect and track fermentation. The experiment apparatus can detect at least 4 days with fully automated. According to the amount of change in frequency, it can instantly detect the concentration of ethanol that is in fermentation broth。
[1] E. J.; Kang, Y. S. ; Bokinsky, G.; Hu, Z. H.;Schirmer, A.;McClure, A.; del Cardayre, S.B. ;Keasling, J.D. Nature. 2010,463,559-U182
[2] Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D. Proc. Natl. Acad. Sci. U. S. A. 2006,103, 11206-11210
[3] Sun, Y.; Cheng, J.Y. Bioresour. Technol. 2002,83, 1-11
[4] Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Bioresour. Technol. 2005,96, 673-686
[5] Demirbas, A. Prog. Energy Combust. Sci. 2007,33, 1-18
[6] Roman-Leshkov, Y.; Barrett, C.J.; Liu, Z.Y.; Dumesic, J.A. Nature 2007,447, 982-U5
[7] He, Y.-S.; Chen, K.-F.; Lin, C.-H.; Lin, M.-T.; Chen, C-C.; Lin, C.-H. Anal. Chem.2013, 85, 3303-3308.
[8] Lin, C.-H.; Lin, C.-H.; Li, Yi-S.; He, Y.-S. Anal. Chem.2010, 82, 7467-7471.
[9] Andersen, P. C.; Williford, C. J.; David, D. E.; Birks, J. W. Anal. Chem.2010, 82, 7929-7934.
[10] Trung, D. D.; Toan, N. V.; Tong, P. V.; Duy, N. V.; Hoa, N. D.; Hieu, N. V. Ceram. Int.2012, 38, 6557-6563.
[11] Zerega, Y.; Reynard-Carette, C.; Parrat, D.; Carette, M.; Brkic, B.; Lyoussi, A.; Bignan, G.; Janulyte, A.; Andre, J.; Pontillon, Y.; Ducros, G.; Taylor, S.,IEEE T. Nucl. Sci.2012, 59, 1323-1334.
[12] Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan, K. L. Nature. 2002,420, 302-304.
[13] Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J. Nature. 1997, 386, 377-379.
[14] Gross , K. J.; Thomas, G. J.; Jensen, C. M.; J. Alloys Compd. 2002, 330-332, 683-690.
[15] Resan, M.; Hampton, M. D.; Lomness, J. K.; Slattery, D. K. Int. J. Hydrogen Energy2005, 30, 1417-1421.
[16] Huot , J.; Pelletier, J. F.; Liang, G.; Sutton, M.; Schulz, R. J. Alloys Compd. 2002, 330-332, 727-731.
[17] Hanf, S.; Bogozi, T.; Keiner, R.; Frosch, T.; Popp, J. Anal. Chem. 2015, 87, 982-988
[18] Jian, R. S.; Sung, L. Y.; Lu, C. J. Chemosphere 2014,99,261-266
[19] Wong, M. Y.; Cheng, W. R.; Liu, M. H.; Tian, W. C.; Lu, C. J. Talanta 2012 101 307-33
[20] Chen, K. J.; Lu, C. J. Talanta 2010,81,1670-1675
[21] Xu, C. L.; Chen, H. Y.; Yan, Y.; Wang, S. M. Fuel 2015,151,73-82
[22] Wang, B.; Sivret, E. C.; Parcsi, G.; Stuetz, R. M. Talanta 2015,137,71-79
[23] Pang, X. B.; Carpenter, L. J.; Lewis, A. C. Talanta 2015,137,214-219
[24] Huang, X. C.; Guo, C. F.; Yuan, Y. H.; Luo, X. X.; Yue, T. L. Food Control 2015,51,270-277
[25] Hori, H.; Ishimatsu, S. ; Fueta, Y.; Hinoue, M.; Ishidao, T. J. Occup. Health 2015,57,13-19
[26] Monkawa, A.; Nakagawa, T.; Sugimori, H.; Kazawa, E.; Sibamoto, K.; Takei, T.; Harutab, M. Sens. Actuator B-Chem. 2014,196,1-9
[27] Shore, S. G.; Parry, R. W. J. Am. Chem. Soc. 1958, 80, 8-12.
[28] Demain, A. L.; Newcomb, M.; Wu, J. H. D. Microbiol. Mol. Biol. Rev. 2005,69,124-154
[29] Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D. Proc. Natl. Acad. Sci. U. S. A. 2006,103,11206-11210
[30] Balat, M.; Balat, H.; Oz, C. Prog. Energy Combust. Sci. 2008,34,551-573
[31] Shrestha, P.; Ibanez, A. B.; Bauer, S.; Glassman, S. I.; Szaro, T. M.; Bruns, T. D.; Taylor, J. W. Biotechnol. Biofuels 2015,8:38
[32] Nunez-Lopez, L.; Aguirre-Cruz, A.; Barrera-Figueroa, B.; Pena-Castro, J PEERJ 2015,3,UNSP e817
[33] Hadian, S.; Madani, K. Ecol. Indic. 2015,52,194-206
[34] Baeyens, J.; Kang, Q.; Appels, L.; Dewil, R.; Lv, Y. Q.; Tan, T. W. Prog. Energy Combust. Sci. 2015,47, 60-88
[35] Squillace, P.J.; Zogorski, J.S.; Wilber, W.G.; Price, C.V. Environ. Sci. Technol. 1996,30, 1721-1730
[36] Steffan, R.J.; McClay, K.; Vainberg, S.; Condee, C.W.; Zhang, D.L. Appl. Environ. Microbiol. 1997,63, 4216-4222
[37] Alvira, P.; Tomas-Pejo, E.; Ballesteros, M.; Negro, M.J. Bioresour. Technol. 2010,101, 4851-4861
[38] Tilman, D.; Hill, J.; Lehman, C. Science 2006,314, 1598-1600
[39] Saha, B.C. Ind. Microbiol. Biotechnol. 2003,30,279-291
[40] Turhan, O.; Isci, A.; Mert, B.; Sakiyan, O.; Donmez, S. Prep. Biochem. Biotechnol. 2015,45, 785-795
[41] Cha, Y.L.; An, G.H.; Yang, J.; Moon, Y.H.; Yu, G.D.; Ahn, J.W. Renew. Energy 2015,80, 259-265
[42] Yang, M.; Zhang, J.H.; Kuittinen, S.; Vepsalainen, J.; Soininen, P.; Keinanen, M.; Pappinen, A. Bioresour. Technol. 2015,189, 131-137
[43] Wang, H.C.; Klinthong, W. ; Yang, Y.H. ; Tan, C.S. Bioresour. Technol. 2015,189, 162-168
[44] Ninomiya, K.; Omote, S.; Ogino, C.; Kuroda, K.; Noguchi, M.; Endo, T.; Kakuchi, R.; Shimizu, N.; Takahashi, K. Bioresour. Technol. 2015,189, 203-209
[45] Hendriks, A.T.W.M.; Zeeman, G. Bioresour. Technol. 2009,100, 10-18
[46] Coltman,J. J. Acoust. Soc. Am. 1976, 60 725-733
[47] L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, G. Morcillo, Langmuir 2000,16,9722.
[48] John Clarkson, W. Ewen Smith, David N. Batchelder, D. Alastrair Smith, Alison M. Coats. J. Molecular Structure 2003,648, 203
[49] F. Anton, Process and Apparatus for Preparing Artificial Threads, U.S. Patent 1975504
[50] D. H. Reneker, A.L. Yarin, H.Fong, S. Koombhongse, J.App, Psys. 2000,87, 4531
[51] Drumright, R.E.; Gruber, P.R.; Henton, D.E. Adv. Mater. 2000,12, 1841-1846
[52] Garlotta, D. J. Polym. Environ. 2001,9, 63-84
[53] Yang, F.; Murugan, R.; Wang, S..; Ramakrishna, S. Biomaterials 2005,26, 2603-2610
[54] MIKOS, A.G.; THORSEN, A.J.; CZERWONKA, L.A.; BAO, Y.; LANGER, R.; WINSLOW, D.N.; VACANTI, J.P. Polymer 1994,35, 1068-1077
[55] L. Larrondo, R.S.J. Manley. Polymer Phys. 1981,19, 921
[56] G. Taylor, Soc. London Series a-Math. Phys, Sci 1989,313 , 453
[57] D. H. Reneker, I. Chun, Nano tech 1996,7, 216
[58] Dale J. Wound dressings. Prof Nurse, 1997,12, 2
[59] M. Rothe, V. Falanga, Arch Dermatol. 1989,125, 1390
[60] S. K. Purna, M. Burns, 2000,26, 54
[61] J.C. Yang, S.Y. Lee, W.C. Tseng, Y.C. Shu, J.C. Lu, H.S. Shie, C.C. Chen, Macromol. Mater. Eng. 2011,297, 115
[62] Dale J. Wound dressings. Prof Nurse 1997,12, 2
[63] M. Rothe, V. Falanga, Arch Dermatol., 1989,125 ,1390
[64] E. Wallis, T. M. Griffin, N. Popkie, Jr., M. A. Eagan, R. F. MacAtee, D. Vrazel and J. McKinly, Proc. SPIE-Int. Soc. Opt. Eng., 2005,5795, 54.
[65] Shih, Y. H.; Yang, J. C.; Li, S. H.; Yang, W. C. V. ; Chen, C. C. Eur. Polym. J. 2012,82,602-612
[66] Ou, K. L.; Chen, C. S.; Lin, L. H.; Lu, J. C.; Shu, Y. C.; Tseng, W. C.; Yang, J. C.; Lee, S. Y.; Chen, C. C. Eur. Polym. J. 2011,47,882-892
[67] Huang, Y. S.; Kuo, C. C.; Shu, Y. C.; Jang, S. C.; Tsen, W. C.; Chuang, F. S.; Chen, C. C. Macromol. Chem. Phys. 2014, 215, 879−887
[68] Tuin, S. A.; Pourdeyhimi, B.; Loboa, E. G. Biomed. Mater. Res. Part A 2014,102, 3311-3323,
[69] Zanjani, J. S. M.; Okan, B. S.; Letofsky-Papst, I.; Yildiz, M. ; Menceloglu, Y. Z. Eur. Polym. J. 2015,62,66-76
[70] Yang, J. C.; Lee, S. Y.; Tseng, W. C.; Shu, Y. C.; Lu, J. C.; Shie, H. S.; Chen, C.C. Macromol. Mater. Eng. 2012, 297, 115-122
[71] C. J. Buchko, Polymer, 1999,40 , 7397
[72] K.H. Lee, H.Y. Kim, H.J. Bang, Y. H. Jung, S.G. Lee, Polymer 2003,44, 4029
[73] J.M. Deitzel, J.D. Kleinmeyer, J.K. Hirvonen, N.C. Tan, Polymer 2001,42, 8163
[74] M. Lallave, J. Bedia, R. Ruiz-Rosas, J. Rodriguez-Mirasol, T. Cordero, J. C. Otero, M. Marquez, A. Barrero and I. G. Loscertales, Adv. Eng. Mater., 2007,19, 4292
[75] H. Fong, I. Chun, D.H. Reneker, Polymer 1999 ,40, 4585-4592
[76] C.J. Buchko., L.C. Chen., Y. Chen., D.C. Martin., Polymer 1999,40, 7397
[77] B.M. Min, Y. You, J.M. Kim, S.J. Lee, W.H. Park, Carbo.Polymers 2004, 57, 285-292
[78] K. H. K. Chan, M. Kotaki, J. Appl. Polym. Sci., 2009, 111, 408
[79] Aranda, A., Matallana, E., Olmo, M.l.d. 2011. Chapter 1 - Saccharomyces Yeasts I: Primary Fermentation. in: Molecular Wine Microbiology, (Eds.) A.V. Carrascosa, R.M. Gonzalez, Academic Press. San Diego, pp. 1-31.
[80] Carrascosa, A.V., Martinez-Rodriguez, A., Cebollero, E., Gonzalez, R. 2011. Chapter 2 - Saccharomyces Yeasts II: Secondary Fermentation. in: Molecular Wine Microbiology, (Eds.) A.V. Carrascosa, R.M. Gonzalez, Academic Press. San Diego, pp. 33-49.
[81] Liu, H.-w.; Wu, B.-z.; Lo, J.-g. The Chinese Chem. Soc. Taipei 2004, 62, 377.