研究生: |
沈正傑 Shen, Cheng-Chieh |
---|---|
論文名稱: |
利用腦磁圖儀進行人類在單調音刺激下顳葉區的活化特性研究 An MEG Research of active property on human Temporal lobe by different pure tone stimulus |
指導教授: |
廖書賢
Liao, Shu-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 43 |
中文關鍵詞: | 腦磁圖儀 、單頻音 、腦區主控性 、活化強度 |
DOI URL: | https://doi.org/10.6345/NTNU202204354 |
論文種類: | 學術論文 |
相關次數: | 點閱:113 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是利用128通道全腦式腦磁圖儀來探討人類大腦聽覺皮質反應,在本文中我們著重討論在聽覺皮質對於單調音刺激活化特性與不同音頻率刺激下顳葉區活化強度差異性探討,聽覺誘發的開端反應On-response (on-N1m)與終端反應Off-response (off-N1m)的ECD活化強度比較。本實驗將受測者利用左耳及右耳分別聆聽250 Hz, 1000 Hz, 2000 Hz的單調音時所產生的聽覺誘發磁場記錄下來,實驗總共有9位自願性的受測者參加這個試驗,在實驗中,我們發現耳朵接收到不同頻率的聲音刺激後,左右腦都會產生On-N1m及Off-N1m訊號,接著利用單一等效電流偶極(equivalent current dipole, ECD)分別比較左腦和右腦的聽覺誘發磁場的活化強度,以腦區主控性而言,On-N1m不管是左耳聲音刺激或右耳聲音刺激皆顯示對側腦的ECD強度較同側腦強,然而在左、右耳對側腦和左、右耳同側腦比較中,發現左耳與右耳的顳葉區ECD活化強度沒有顯著差異,以頻率而言,發現左耳或是右耳聲音刺激頻率1000 Hz活化強度大於250 Hz且具有顯著差異,左耳聲音刺激對於頻率2000 Hz 活化強度小於1000 Hz且具有顯著差異,左耳或是右耳聲音刺激下對側腦對於頻率2000 Hz的活化強度略大於頻率250 Hz。
由本實驗我們可以發現聽覺刺激是由對側腦主控,然而左耳與右耳聽覺接收能力並沒有差異性,並且人類大腦聽覺皮質最能接收到的頻率為1000 Hz 附近的音頻,若是頻率提高有接收程度下降的趨勢。
無英文摘要
1.Y H Lee, K.K.Y., H Kwon, J M Kim, K Kim, Y K Park, H C Yang, K L Chen, S Y Yang and H E Horng, A whole-head magnetoencephalography system with compact axial gradiometer structure. Superconductor Science and Technology, 2009. 22(4).
2.Matti Hämäläinen, R.H., Risto J. Ilmoniemi, Jukka Knuutila, and Olli V. Lounasmaa, Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain. . Reviews of modern physics, 1993. 65: p. 413-493.
3.M.F. Bear et al., Neuroscience: exploring the brain. Third edition. Lippincott Williams & Wilkins.
4.M.A. Howard III et al., Auditory Cortex on the Human Posterior Superior Temporal Gyrus. THE JOURNAL OF COMPARATIVE NEUROLOGY, 416 (2000) 79–92.
5.T. Tuomisto et al., Studies of Auditory Evoked Magnetic and Electric Responses: Modality Specificity and Modelling. Il Nuovo Cimento D, 2 (1983) 471–483.
6.C. Pantev et al., Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroencephalography and clinical Neurophysiology, 69 (1988) 160–170.
7.C. Pantev et al., Tonotopic organization of the sources of human auditory steady-state responses. Hearing Research, 101 (1996) 62–74.
8.I.Ozaki et al., Dynamic movement of N100m dipoles in evoked magnetic field reflects sequential activation of isofrequency bands in human auditory cortex. Clinical Neurophysiology, 114 (2003) 1681–1688.
9.I. Ozaki et al., Rapid change of tonotopic maps in the human auditory cortex during pitch discrimination. Clinical Neurophysiology, 115 (2004) 1592–1604.
10.Luann E. Van Campen et al., Human offset auditory brainstem response: effects of stimulus acoustic ringing and rise-fall time. Hearing Research, 103 (1997) 35–46.
11.K. Noda et al., Auditory evoked off-response: its source distribution is different from that of on-response. NeuroReport, 9 (1998) 2621–2625.
12.K. Yamashiro et al., Somatosensory off-response in humans: An MEG study. NeuroImage, 44 (2009) 1363–1368.
13.K. Yamashiro et al., Automatic auditory off-response in humans: an MEG study. European Journal of Neuroscience, 30 (2009) 125–131.
14.L. Crevits et al., On and off contribution to the combined occipital on–off response to a pattern stimulus. Ophthalmologica, 184 (1982) 169–173.
15.Sandra Da Costa, Wietske van der Zwaag, Jose P. Marques, Richard S. J. Frackowiak, Stephanie Clarke1, and Melissa Saenz, Human Primary Auditory Cortex Follows the Shape of Heschl's Gyrus. The Journal of Neuroscience, 5 October 2011, 31(40)
16.李柏增(2012)。利用腦磁圖儀研究人類在不同單一頻率的聲音刺激下顳葉區。未出版之碩士論文,國立台灣師範大學光電科技研究所,台北。