研究生: |
葉晏菱 Ye, Yan-Ling |
---|---|
論文名稱: |
具有減少穩定時間技術的高速逐次逼近式類比數位轉換器 High-Speed SAR ADC with Settling Time Reduction Technique |
指導教授: |
郭建宏
Kuo, Chien-Hung |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 逐次逼近式類比數位轉換器 、電容式數位類比轉換器 、減少穩定時間技術 、比較器 |
英文關鍵詞: | Successive Approximation Register Analog-to-Digital Converter, Capacitive DAC array, Capacitor settling time reduction technique, Comparator |
DOI URL: | http://doi.org/10.6345/NTNU202000485 |
論文種類: | 學術論文 |
相關次數: | 點閱:282 下載:31 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著半導體製程技術不斷向前推進,智慧型裝置儼然成為時下最熱門的消費性電子產品,輕薄短小且高效能則成為電路設計的主流,需要透過類比數位轉換器來實現。在眾多架構裡,沒有繁冗的架構且需求的元件較少,再加上製程的提升,高效能的特點,在高取樣率的電路需求中被廣泛地使用,即是逐次逼近式類比數位轉換器最為合適。
本論文中,提出了減少電容切換的穩定時間技術來有效地提高整體電路的操作速度,相較於傳統的DAC架構,在相同的總電容量下,使用兩組DAC,讓每次切換減少了兩倍的時間。此外,N位元的電路使用N個比較器使得SAR ADC比較後不必透過暫存的方式而是直接回傳比較結果給DAC的開關進行切換,大幅地加速整體運作速度。在供應電源為1.2-V操作下,本研究採用TSMC 90nm 1P9M的製程,取樣頻率為400MHz,輸入訊號頻率為199.85MHz的模擬下,可達到的信號雜訊失真比為48.71dB,DNL和INL分別為+0.24/ -0.22及+0.22/ -0.5,總消耗功率為4.77mW,品質因數為53.5-fJ/conversion-step。
With the improvement of semiconductor technology, smart devices have turned into one of the most popular consumer electronics. The requirement for a smaller size with high performance has become the mainstream in circuit design. To reach that requirement, an analog-to-digital converter will be needed in analog design. Among all the structures, successive approximation register analog-to-digital converter (SAR ADC) is the simplest and requires less circuit components. Also, with the advance of manufacturing process, its high performance and high sampling rate make it widely used in the circuit. Therefore, SAR ADC will be our best choice.
In this thesis, a capacitor switching with settling time reduction (STR) technique is proposed to effectively enhance the operation speed of the overall circuit. Compared to the conventional DAC structure, with the same total capacitance, the two sets of DACs in the proposed structure are able to reduce the time by two in every switching. Besides, by using N comparators in an N-bit circuit, the SAR ADC does not need a temporary storage after comparison. Rather, the comparison result can directly be sent back to the DAC for switching and thus greatly accelerate the overall operation. Under 1.2V supply voltage, this work utilizes TSMC 90nm 1P9M manufacturing process. Under 400MHz sampling rate and with 199.85MHz input signal frequency, the simulation SNDR of the proposed ADC is 48.71dB. The DNL and INL are +0.24/-0.22 and +0.22/-0.5, respectively. The total power consumption is 4.77mW, and the FOM is 53.5fJ/conversion-step.
[1] D. A. Johns and K. Martin, Analog CMOS Integrated Circuit Design, John Wiley & Sons, Inc., 1997.
[2] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill Inc., 2000.
[3] R. Jacob Baker, CMOS: Mixed-Signal Circuit Design, Second Edition, John Wiley & Sons, Inc., 2008.
[4] J. McCreary and P. Gray, "A high-speed, AII-MOS, successive-approximation weighted capacitor A/D conversion technique," 1975 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, Philadelphia, PA, USA, 1975, pp. 38-39.
[5] L. Kull, T. Toifl, M. Schmatz, P. A. Francese, C. Menolfi, M. Braendli, M. Kossel, T. Morf, T. M. Andersen, and Y. Leblebici, “A 3.1mW 8b 1.2GS/s single-channel asynchronous SAR ADC with alternate comparators for enhanced speed in 32nm digital SOI CMOS,” IEEE Int. Solid-State Circuits Conf., Feb. 2013, pp. 468–469.
[6] H. Huang, L. Du, and Y. Chiu, “A 1.2-GS/s 8-bit two-step SAR ADC in 65-nm CMOS with passive residue transfer,” IEEE J. Solid-State Circuits, vol. 52, no. 6, pp. 1551–1562, Jun. 2017.
[7] H. K. Hong, H. W. Kang, B. Sung, C. H. Lee, M. Choi, H. J. Park, and S. T. Ryu “An 8.6 ENOB 900MS/s time-interleaved 2b/cycle SAR ADC with a 1b/cycle reconfiguration for resolution enhancement,” IEEE Int. Solid-State Circuits Conf., Feb. 2013, pp. 470–471.
[8] T. Jiang, W. Liu, F. Y. Zhong, C. Zhong, K. Hu, and P. Y. Chiang, “A single-channel, 1.25-GS/s, 6-bit, 6.08-mW asynchronous successive-approximation ADC with improved feedback delay in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 10, pp. 2444–2453, Oct. 2012.
[9] M. Dessouky and A. Kaiser, "Input switch configuration suitable for rail-to-rail operation of switched op amp circuits," in Electronics Letters, vol. 35, no. 1, pp. 8-10, 7 Jan. 1999.
[10] M. Dessouky and A. Kaiser, "Very low-voltage digital-audio ΔΣ modulator with 88-dB dynamic range using local switch bootstrapping," IEEE Journal of Solid-State Circuits, vol. 36, no. 3, pp. 349-355, March 2001.
[11] C. Liu, C. Kuo and Y. Lin, "A 10 bit 320 MS/s Low-Cost SAR ADC for IEEE 802.11ac Applications in 20 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp. 2645-2654, Nov. 2015.
[12] J. He, S. Zhan, D. Chen and R. L. Geiger, "Analyses of Static and Dynamic Random Offset Voltages in Dynamic Comparators," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 5, pp. 911-919, May 2009.
[13] A. T. Ramkaj, M. Strackx, M. S. J. Steyaert and F. Tavernier, "A 1.25-GS/s 7-b SAR ADC With 36.4-dB SNDR at 5 GHz Using Switch-Bootstrapping, USPC DAC and Triple-Tail Comparator in 28-nm CMOS," IEEE Journal of Solid-State Circuits, vol. 53, no. 7, pp. 1889-1901, July 2018.
[14] D. Luu et al., "A 12-bit 300-MS/s SAR ADC With Inverter-Based Preamplifier and Common-Mode-Regulation DAC in 14-nm CMOS FinFET," IEEE Journal of Solid-State Circuits, vol. 53, no. 11, pp. 3268-3279, Nov. 2018.
[15] Jiren Yuan and C. Svensson, "New TSPC latches and flipflops minimizing delay and power," 1996 Symposium on VLSI Circuits. Digest of Technical Papers, Honolulu, HI, USA, 1996, pp. 160-161.
[16] H. Russell, "An improved successive-approximation register design for use in A/D converters," IEEE Transactions on Circuits and Systems, vol. 25, no. 7, pp. 550-554, July 1978.
[17] L. Chen, K. Ragab, X. Tang, J. Song, A. Sanyal and N. Sun, "A 0.95-mW 6-b 700-MS/s Single-Channel Loop-Unrolled SAR ADC in 40-nm CMOS," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 3, pp. 244-248, March 2017.
[18] K. Ragab and N. Sun, "A 1.4mW 8b 350MS/s loop-unrolled SAR ADC with background offset calibration in 40nm CMOS," ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, Lausanne, 2016, pp. 417-420.
[19] Y. Zhu et al., "A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, June 2010.
[20] H. Wei et al., "A 0.024mm2 8b 400MS/s SAR ADC with 2b/cycle and resistive DAC in 65nm CMOS," 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2011, pp. 188-190.
[21] V. Tripathi and B. Murmann, "An 8-bit 450-MS/s single-bit/cycle SAR ADC in 65-nm CMOS," 2013 Proceedings of the ESSCIRC (ESSCIRC), Bucharest, 2013, pp. 117-120.
[22] G. Dai, C. Chen, S. Ma, F. Ye and J. Ren, "A 400-MS/s 8-b 2-b/cycle SAR ADC with shared interpolator and alternative comparators," 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne VIC, 2014, pp. 2365-2368.
[23] T. Tsai, H. Tai, P. Tsai, C. Tsai and H. Chen, "An 8 b 700 MS/s 1 b/Cycle SAR ADC Using a Delay-Shift Technique," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 5, pp. 683-692, May 2016.
[24] Q. Liu, W. Shu and J. S. Chang, "A 400-MS/s 10-b 2-b/Step SAR ADC With 52-dB SNDR and 5.61-mW Power Dissipation in 65-nm CMOS," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 12, pp. 3444-3454, Dec. 2017.