簡易檢索 / 詳目顯示

研究生: 賴世霖
Lai, Shih-Lin
論文名稱: 半導體光子晶體光學性質之磁場效應
Magnetic-field Dependence of Optical Properties in an InSb-based Photonic Crystal
指導教授: 吳謙讓
Wu, Chien-Jang
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 38
中文關鍵詞: 半導體光子晶體光學性質之磁場效應光子晶體
英文關鍵詞: Photonic Crystal, InSb-based
論文種類: 學術論文
相關次數: 點閱:154下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文中,我們研究半導體光子晶體光學性質的磁場效應。我們利用3轉移矩陣法(TMM)來計算結構的頻譜圖,論文有三個主題:
    主題一是研究光子晶體的InSb光學特性在Faraday effect,利用週期性層狀air/〖(AB)〗^N/air的結構,A = InSb、B = air、N=stack number,我們利用外加的磁場B改變光子晶體的光子能帶結構。並且分析在正常入射和斜向入射的情況。其中InSb的介電常數是在不同的頻率範圍不同的修改。結果,該光子能帶結構和透射特性將可以相對應的調整。
    主題二則是InSb在有限光子晶體中利用磁場設計可調式多通道的濾波器,利用相同air/〖(AB)〗^N/air 的結構來研究,A =InSb、B = Air,固定層數4層,我們會發現負介電常數可以在-1.2x1013Hz的頻率範圍中找到,此時InSb會有金屬的特性,並且一樣改變磁場B與角度可以發現透射峰藍移或是紅移,綜合以上特性,設計可調式多通道的濾波器。
    主題三是 光子晶體的InSb光學特性在Voigt Effects 之研究,在本章中,我們會研究光子晶體在Voigt Effects中的變化,不同的是比較Faraday effect在第兩三的主題。一樣利用air/〖(AB)〗^N/air 的結構來研究,但因為Voigt Effects中磁場不平行,而是垂直的。所以比較Faraday effect與Voigt Effects在光子晶體中的優點和缺點。

    In this thesis, we study the magnetic-field dependence of optical properties in an InSb-based photonic crystal. There are three topicsto be studied. In these works, wewilluse transfer matrix method (TMM) to calculate thephotonic band structure (PBS) and transmittance characteristics of a 1D photonic crystal.
    The first topic is to study theoptical propertiesphotonic crystalof in Faraday configuration. The considered structure isair/〖(AB)〗^N/air, where A = InSb, B = air, and N= stack number.We shall change the appliedmagnetic fieldBto investigate howthe PBS can be affected.The analysiswill be made in the case ofnormal incidenceand obliqueincidence.
    The second topic is to study the multiple filtering property in a finite InSb PC of air/〖(AB)〗^N/air. In this case, we limit the frequency range at which the permittivity of InSb can be negative such that InSb is metal-like. It will be seen thatchanging the magnetic fieldBandthe anglecan make transmission peakblue-shift tored-shift. Thus, a tunable multichannel filter can be achieved.
    In the third part, we study the optical properties of photonic crystals InSb in the Voigt configuration. The study will be compared with the first topic in parallel.The distinction between the two configurations will be demonstrated.

    Abstract 1 Chapter 1 Introduction 3 Chapter 2 Faraday Effects on Photonic Band Structure in an InSb-based Photonic Crystal 11 2-1Introduction 2-2Basic equations and results and discussion Chapter 3 Magnetic-Field Dependence of InSb-Based Finite Photonic-Crystal Multichannel Filters 18 3-1Introduction 3-2Basic equations and results and discussion Chapter 4 Voigt Effects on Optical Properties in InSb-based Photonic Crystals 26 4-1Introduction 4-2Basic equations and results and discussion Chapter 5 Conclusion 33 References 35

    [1] E. Yablonovitch "Inhibited Spontaneous Emission in Solid-State Physics and Electronics", Phys. Rev. Lett., Vol. 58, 2059, 1987.
    [2] S. John, "Strong Localization of Photons in Certain Disordered Dielectric Superlattices", Phys. Rev. Lett. Vol.58, 2486, 1987.
    [3] H. Li and X. Yang, “Larger absolute band gaps in two-dimensional photonic crystals fabricated by a three-order-effect method,” Progress In Electromagnetics Research, Vol. 108, 385, 2010.
    [4] L. P. Biró, K. Kertész, Z. Vértesy, G. I. Márk, Zs. Bálint, V. Lousse and J.-P. Vigneron, “Living photonic crystals: Butterfly scales - Nanostructure and optical properties,” Mater. Sci. Eng. C, Vol. 27, 941, 2007.
    [5] F. Mika, J. Matějková-Plšková , S. Jiwajinda, P. Dechkrong and M. Shiojiri, “Photonic Crystal Structure and Coloration of Wing Scales of Butterflies Exhibiting Selective Wavelength Iridescence”, Materials, Vol. 5, 754, 2012.
    [6] A. Bruyant, G. Lérondel, P. J. Reece, and M. Gal, “All-silicon omnidirectional mirrors based on one-dimensional photonic crystals,” Appl. Phys. Lett., Vol. 82, 3227, 2003.
    [7] E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature, Vol. 407, 983, 2000.
    [8] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz and Jim Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature, Vol. 394, 251, 1998.
    [9] R. L. Nelson, and J. W. Haus, “One-dimensional photonic crystalsin reflection geometry for optical applications,” Appl. Phys. Lett., Vol. 83, 1089-1091, 2003.
    [10] Y., J. Fink, N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and L. E. Thomas, “A dielectric omnidirectional reflector,” Science, Vol. 282, 1679, 1998.
    [11] X. Z. Sun, , P. F. Gu, W. D. Shen, X. Liu, Y. Wang, and Y. G. Zhang, “Design and fabrication of a novel reflection filter,” Applied Optics, Vol. 46, 2899, 2007.
    [12] Y.-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled-resonator optical waveguides,” Phys. Rev. E, Vol. 69, 056604, 2004.
    [13] D. Chen, M.-L. Vincent Tse, and H.-Y. Tam, “Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes: Birefringence and dispersion,” Progress In Electromagnetics Research, Vol. 105, 193, 2010.
    [14] C.-J. Wu, J.-J. Liao, and T. W. Chang, “Tunable multilayer Fabry-Perot resonator using electro-optical defect layer,” Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 531, 2010.
    [15] Y. Shi, “A compact polarization beam splitter based on a multimode photonic crystal waveguide with an internal photonic crystal section,” Progress In Electromagnetics Research, Vol. 103,393, 2010.
    [16] L.-M. Qi, and Z. Yang, “Modified plane wave method analysis of dielectric plasma photonic crystal,” Progress In Electromagnetics Research, Vol. 91, 319, 2009.
    [17] http://newton.cc.ncu.edu.tw/~trich/NCUPCR/NCUPCR.htm
    [18] P. St. J. Russell, “Photonic crystal fibers,” Science, Vol. 299, 358, 2003.
    [19] S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, “Full Three-Dimensional Photonic Band gap Crystals at Near-Infrared Wavelengths,” Science, Vol. 289, 605, 2002.
    [20] A. Sharkawy, D. Pustai, S. Shi, D. W. Prather, “High Transmission through Waveguide Bends by Use of Polycrystalline Photonic-Crystal Structures,” Opt. Lett., Vol. 28, 1197, 2003.
    [21] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. Vol. 77, 3787, 1996.
    [22] C. C. Chen, Y. L. Tsai, C. L. Hsu, J. Y. Chang, “Propagation Loss Reduction of Photonic Crystal Slab Waveguides by Microspheres,” Opt. Express, Vol. 12, 3934, 2004.
    [23] S. G. Johnson, C. Manolatou, S. Fan, R. Villeneuve, and J. D. Joannopoulos, “Elimination of Cross Talk in Waveguide Intersections,” Opt. Lett., Vol. 23, 1855, 1998.
    [24] J. A. Alexander-Webber et al. "High-current breakdown of the quantum Hall effect and electron heating in InSb/AlInSb", Phys. Rev. BVol.86, 045404, 2012.
    [25] Quantum well' transistor promises lean computing
    [26] https://en.wikipedia.org/wiki/Indium_antimonide

    無法下載圖示 本全文未授權公開
    QR CODE