研究生: |
黃進達 Chin-Da, Huang |
---|---|
論文名稱: |
台中地區第四紀沉積環境研究與大地構造意義 Quaternary Depositional Environment and Tectonic Significances of the Taichung Area, Central Taiwan |
指導教授: |
李通藝
Lee, Tung-Yi |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | 第四紀 、大肚溪 、沉積環境 、豬背盆地 、車籠埔斷層 、層序地層 |
英文關鍵詞: | Quaternary, Dadu River, Depositional environment, Piggyback basin, Chelongpu fault, Sequence stratigraphy |
論文種類: | 學術論文 |
相關次數: | 點閱:234 下載:30 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討台中地區(包含濱海平原與台中盆地),於第四紀之沉積環境變遷與其在大地構造上之意義。本研究之研究材料主要為經濟部中央地質調查所於本區域鑽探的岩心,包括濱海平原區的華龍、三光、高美、清水、梧棲、忠和、大肚、伸東及全興井;加上位於台中盆地內的烏日及大里,共11口井。本研究藉由記錄岩心組成顆粒與沉積構造,利用沉積學原理與相模式,分析岩心之岩相組合,解釋沉積環境;再藉由層序地層學原理,進行各井對比並劃分層序,建構台中地區的地下地層與沉積環境變遷模式。對比濱海平原跟台中盆地兩區之古沉積環境,可發現濱海平原區的沉積主要受沉積物供應、全球海水面升降與構造運動(台地隆起時造成之沖積扇)控制;而台中盆地中只有辮狀河平原的沉積環境。
從現代大肚溪河系分布可發現,台中盆地內所有大肚溪支流都至烏日匯聚成大肚溪主流才出盆地,而烏日岩心從底至頂也一直出現辮狀河沉積環境,與現代情形相符。由於大肚井岩心中,山前沖積扇和辮狀河環境交替出現,代表在大肚台地隆起時,大肚溪即在此發育,因此應為先成河,再加上後成影響(在台地抬升同時加速下切),持續由大肚台地與八卦山台地交接處流出盆地。另外,比較大肚、烏日、大理岩心的沉積環境相變情形,推斷大肚溪三角洲可能由於水流量較小且台中盆地仍未被沉積物填滿,使大肚溪沉積物大部分沉積於台中盆地,造成大肚溪在濱海平原區的三角洲較不易發育。
劃分高美、清水、梧棲、忠和、大肚、全興與伸東7口井的層序並對比後,建構出濱海地區晚第四紀以來沉積環境變遷模式如下:
1. 海進面時期(8234至32710年前之間) –此時為海進面,海岸線較現今更向西,區域內沉積環境大部分為辮狀河平原。
2. 海進體系域時期 –此時期相對海水面持續上升,海岸線向東遷移,沉積環境從河口灣轉變為濱面與潮坪,為海進體系域。
3. 最大海漫面時期(2866至6397年前之間) –此時為最大海漫面(MFS),海岸線到達此次沉積層序中最東側,沉積環境除了最東側為潮坪環境以外,大部分為遠濱過渡帶。
4. 高水位體系域時期 –相對海水面開始下降,海岸線逐漸向西遷移,全區沉積環境由遠濱過渡帶轉變為濱面以及潮坪,形成高水位體系域(HST)。
The research used core data to study the Quaternary depositional environment and their tectonic significance of the Taichung aera (including the coastal plain and the Taichung basin), in central Taiwan. The research materials used 11 cores drilled by Central Geological Survey, MOEA, including Hualong, Sanguang, Gaomei, Cingshuei, Wuqi, Zhonghe, Dadu, Shendong, Quanxing cores in the coastal plain, and Wurih, Dali in the Taichung basin. The sedimentary composition and structure of all the cores were logged, and used the sedimentary theorem and facies model to explain the depositional environment. After that, the sequence stratigraphy there is applied to divide and correlate the sequences, and to build the depositional history of the Taichung area. By contrast, the depositional environment in the coastal plain is controlled primarily by sediment supply of the braid rivers, global sea level, and tectonics (deposition of alluvial fan resulted from the uplift of the tableland). But the depositional environment in the Taichung basin is only braidplain.
According to distribution of the Dadu river drainage pattern, all tributaries in Taichung basin converge in Wurih, and the records of the braided river deposition accumulated continuously in the Wurih core. The Dadu river processes are thought to be a combination of superposition followed by antecedence. Because the alluvial fan and braidplain facies appeared alternately in the Dadu core, it indicates that the Dadu river was antecedence here when the Dadu tableland rose, and mixed process of superposition (speed up to erosion with the Dadu tableland rising). In addition, after comparing with the flow data of Dadu river and Jhuoshuei river, we can infer that the reason why the Dadu river delta developed slowly due to the fact that the river flow is smaller and the sediment is used to fill the Taichung basin first.
Using sequence stratigraphy theory to separate the sequence and correlate the 7 cores (Gaomei, Cingshuei, Wuqi, Zhonghe, Dadu, Quanxing, and Shendong), the model of depositional environment change in the coastal plain can be built up:
1. Transgressive surface – at this time, the sea level began to rise. The depositional environment is all braidplain.
2. Transgressive systems tract –at this time, the sea level continued to rise, so the coast line migrated to the east, the depositional environment changed from the estuary to shoreface and tidal flat. They were in the transgressive systems track.
3. Maximum flooding surface –at this time, the sea level rose to the highest, the coastal line migrated to the tableland. The depositional environment was mostly tidal flat, except for the east (tableland) was the offshore.
4. Highstand systems tract –the sea level began to drop down, and the coastal line migrated westward, all the depositional environment changed from offshore to the tidal flat. The highstand systems track (HST) started.
中文部分:
于興河,2002,碎屑岩系油氣儲層沉積學,石油工業出版社,北京,共352頁。
何春蓀,1982,台灣地體構造的演變-台灣地質構造圖說明書,經濟部中央地質調查所,共110頁。
何春蓀,2006,台灣地質概論:台灣地質圖說明書,第三版,經濟部中央地質調查所,共164頁。
吳琮壬,2007,嘉義海岸平原區末次冰期以來古沉積環境之研究,國立台灣大學地質學研究所碩士論文,共186頁。
花井重次,1934,地形區(台灣地區),岩波講座。
林朝棨,1935,台中豐原地方第三紀及第四紀地層之地層研究,台北帝國大學理農學部紀要,第十三卷,第三期。
林朝棨,1957,台灣地形,台灣文獻委員會,台灣省通誌稿,卷一,第一冊,共423頁。
林朝棨、周瑞燉,1974,台灣地質,台灣文獻委員會,共450頁。
柯炯德,1997,三義台地、大肚台地及八卦台地地區頭嵙山層之沉積環境研究,國立台灣大學地質學研究所碩士論文,共90頁。
陳文山、何信昌、王源、楊昭男、高銘健、張益生、鄂忠信、陳勉銘,1994,台灣西南部上新統至更新統的岩相學研究與地層對比,經濟部中央地質調查所特刊,第八號,第83-99頁。
陳文山、陳于高、劉聰桂、黃能偉、林清正、宋時驊、李昆杰,2000a,921集集大地震的地震斷層特性與構造意義,經濟部中央地質調查所特刊,第十二號,第139-154頁。
陳文山、鄂忠信、陳勉銘、楊志成、張益生、劉聰桂、洪崇勝、謝凱旋、葉明官、吳榮章、柯炯德、林清正、黃能偉,2000b,上─更新世台灣西部前陸盆地的演化─沉積層序與沉積物組成的研究,經濟部中央地質調查所彙刊,第十三號,第137-156頁。
陳勇全,2004,六龜地區礫岩沈積環境與潮州斷層之研究,國立台灣大學地質學研究所碩士論文,共97頁。
陳勉銘、何信昌,2000b,九二一集集地震斷層與車籠埔斷層之關聯,經濟部中央地質調查所特刊,第十二號,第113-138頁。
陳勉銘、何信昌,2000a,台中圖幅說明書,經濟部中央地質調查所,共65頁。
陳振華,1993,由晚期新生代沉積物之岩象學與構造地質學研究探討台灣中西部摺皺逆衝帶之演化,國立台灣大學地質學研究所博士論文,共147頁。
陳培源,2006,台灣地質,台灣省應用地質技師公會,共488頁。
陳華玟,2008,全球海水面變遷及大地構造作用對臺灣中部彰化海岸平原末次間冰期沉積物的影響,投稿中。
張瑞津、石再添、陳翰霖,1996,台灣西南部海岸平原地形變遷之研究,國立台灣師範大學地理系地理研究報告,第二十六期,第19-56頁。
張瑞津、石再添、陳翰霖,1997,台灣西部嘉義海岸平原地形變遷之研究,國立台灣師範大學地理系地理研究報告,第二十七期,第105-131頁。
張麗旭,1955,台灣之地層,台灣研究叢刊,第三十六種,台灣銀行經濟研究所,第26-49頁。
張徽正、苟澎生、江崇榮,1984,台灣地區陸上砂石資源調查與研究報告,第二卷,共215頁。
黃進達,2004,南海北部大陸邊緣下中新統第三級層序劃分及大地構造意義,行政院國家科學委員會補助大專學生參與專題研究計畫研究成果報告,國立台灣師範大學地球科學系,共66頁。
游能悌,2001,台灣西部漸新統至中新統的層序地層學,國立台灣大學地質學研究所博士論文,146頁。
楊志成,1997,台灣中部地區錦水頁岩、卓蘭層及頭嵙山層的沉積環境研究,國立台灣大學地質學研究所碩士論文,共120頁。
經濟部中央地質調查所,2005,台灣地區地下水觀測網第三期九十四年度計畫-台中地區水文地質鑽探調查及水文分析研究計畫,經濟部中央地質調查所,共67頁。
英文部分:
Alvarez, W., 1999. Drainage on evolving fold-thrust belts: a study of transverse canyons in the Apennines. Basin Research 11, 267–284.
Amorosi, A, 1996. Genetically related alluvial deposits across active fault zones: an example of alluvial fan; terrace correlation from the upper Quaternary of southern Po Basin, Italy. Sedimentary Geology 102, 3-4, 275-295.
Blatt, H., Middleton, G.V., Murray, R., 1980. Origin of Sedimentary Rocks. Englewood Cliffs, NJ, Prentice-Hall Inc., 782p.
Boggs, S., 2001. Principles of sedimentology and stratigrapht, 3rd Edition. Prentice-Hall Inc., 726p.
Bull, W.B., 1972. Recognition of alluvial-fan deposits in the stratigraphic record. In: Rigby, J.K., Hamblin, W.K. (eds.), Recognition of Ancient Seimentary Enviroments. Soc. Econ. Paleontol. Mineral. Spec. Pub. 16, pp. 63-83.
Catuneanu, O., 2006. Principles of Sequence Stratigraphy. Elsevier BV. Inc., 374p.
Chang, S.L., 1971. Subsurface geologic study of the Taichung basin. Petroleum Geology of Taiwan 8, 21-25.
Chi, W.R., Huang, H.M., 1981. Nannobiostratigraphy and paleoenvironments of the late Neogene sediments and their tectonic implications in the Miaoli area. Petroleum Geology of Taiwan 18, 111-129.
Chou, J.T., 1971. A Sedimentologic and Paleogeographic study of the Neogene formations in the Taichung region, western Taiwan. Petroleum Geology of Taiwan 9, 43-66.
Chou, J.T., 1973. Sedimentology and Paleogeography of the upper Cenozoic system of western Taiwan. Petroleum Geology of Taiwan 16, 111-143.
Chou, J.T., 1977. Sedimentology and Paleogeography of the Pleistocene Toukoshan Formation in western Taiwan. Petroleum Geology of Taiwan 14, 25-36.
Covey, M., 1984a. Lithofacies analysis and basin reconstruction, Plio- Pleistocene western Taiwan foredeep. Petroleum Geology of Taiwan 20, 53-83.
Covey, M., 1984b. Sedimentary and tectonic evolution of the western Taiwan foredeep. unpubl. Ph. D. dissertation, Princeton University, New Jersey, U. S. A., 150p.
Dalrymple, R.W., 1992. Tidal depositional systems. In: Walker, R.G., James, N.P. (eds.), Facies Models: Response to Sea Level Change. Geol. Assoc. Can., Waterloo, Ontario, pp. 195-218.
Dott, R.H.Jr., Bourgeois, J., 1982. Hommocky stratification: Significance of its variable bedding sequences. Geol. Soc. Am. Bull. 93, 663-680.
Emery, D., Myers, K., 1996. Sequence stratigraphy. Blackwell Science, 297p.
Feeley, M.H., Moore, T.C., Loutit, T.S., Bryant, W.R., 1990. Sequence stratigphy of Mississippi fan related to oxygen isotope sea level index. American Association of Petroleum Geologists Bulletin 98, 475-481.
Ferrill, D.A., 1996. Quaternary slip history of the Bare Mountain Fault (Nevada) from the morphology and distribution of alluvial fan deposits. Geology 24, 6, 559-562.
Frey, R.W., Basan, P.B., 1985. Coastal salt marshes. In: Davis, R.A.Jr. (ed.), Coastal Sedimentary Environments, 2nd Edition. Springer-Verlag, Berlin, pp. 225-289.
Galloway, W.E., Hobday, D.K., 1996. Terrigenous Clastic: Depositional System-Applications to Fossil Fule and Groundwater Resources, 2nd Edition. Springer-Verlag, Berlin, 489p.
Haq, B.U., Hardenbol, J., Vail, P.R., 1987. Chronology of fluctuating sea levels since the Triassic (250 million years ago to present). Science 235, 1156-1166.
Hsieh, M.L., Lai, T.H., Wu, L.C., Lu, W.C., 2006. Global (eustatic) sea-level curve of 20-5 ka in Taiwan - constructed by drill-core data from the western coastal plain. XIth Symposium on Quaternary of Taiwan, 105-110.
Hu, C.H., 1978. Studies on ostracodes from the Toukoshan Formation (Pleistocene), Miaoli District. Petroleum Geology of Taiwan 15, 127-166.
Klein G.de V., 1971. A sedimentary model for determining paleotidal range. Geol. Soc. Am. Bull. 8, 2585-2592.
Lee, P.J., 1963. Lithofacies of the Toukoshan-Cholan Formation of western Taiwan. Proceedings of the Geological Society of China 6, 41-50.
Miall, A.D., 1977. A review of the braided river depositional environment. Earth Science Review 13, 1-62.
Miall, A.D., 1978. LIthofacies types and vertical profile models in braided river deposits. In: Miall, A.D. (ed.), Fluvial Sedimentology. Can. Soc. Petro. Geol. Men. 5, pp. 579-604.
Miall, A.D., 1996. The Geology of Fluvial Deposits-Sedimentary Facies, Basin Analysis, and Petroleum Geology. Springer- Verlag, Berlin, 582p.
Mustard, P.S., 1991. Normal faulting and alluvial-fan deposition, basal Windermere tectonic assemblage, Yukon, Canada. Geological Society of America Bulletin 103, 10, 1346-1364.
Nelson, C.H., 1982. Modem shallow water graded sand layers from storm surges, Bering Shelf: a mimic of Bouma sequences and turbidite systems. Sedim. Petrol. 52, 537-545.
Nemec, W., Steel, R.J., 1984. Alluvial and coastal Conglomerated: their significant feature and some comments on gravelly mass-flow deposits. In: Koster, E.H., Steel, R.J. (eds.), sedimentology Gravels and Conglomerates. Can. Soc. Petro. Geol. Mem. 10, pp. 1-31.
Plint, A.G., 1998. Global eustacy and the Eocene sequence in the Hampshire Basin, England. Basin Research 1, 11-22.
Posamentier, H.W., Vail, P.R., 1988. Eustatic controls on clastic deposition II: sequence and systems tract models. In: Wilgus, C.K., Posamentier, H., Ross, C.A., Kendall, C.G.St.C. (eds.), Sea-level changes: an integrated approach, pp. 125-154.
Posamentier, H.W., Allen, G.P., James, D.P., Tesson, M., 1992. Forced regression in a sequence stratigphy framework: concepts and examples and exploration significance. American Association of Petroleum Geologists Bulletin 76, no. 11, 11687-1709.
Rahmani, R.A., 1988. Estuarine tidal channel and nearshore sedimentation of a late Cretaceous epicontinental sea, Drumheller, Alberta, Canada. In: De Boer, P.L., Van Gelder, A., Nio, S.D. (eds.), Tidal-influenced Sedimentary Environments and Facies, Reidel, Dordrecht, pp. 433-471.
Reading, H.G., 2006. Sedimentary environments : processes, facies, and stratigraphy, 3rd Edition. Blackwell Science, 688p.
Reineck, H.E., Wunderlich, F., 1968. Classification and origin of flaser and lenticular bedding. Sedimentology 11, 99-104.
Reineck, H.E., 1972. Tidal flats. In: Rigby, J.K., Hamblin, W.K. (eds.), Recognition of Ancient Sedimentary Environments. Soc. Econ. Paleontol. Mineral. Spec. Pub. 16, pp. 146-159.
Reineck, H.E., Singh, I.B., 1980. Depositional Sedimentary Environments, 2nd Edition. Springer-Verlag, Berlin, 549 p.
Rust, B.R., 1978. Depositional models for braided alluvium. In: Miall, A.D. (ed.), Fluvial sedimentary: Canada Society of Petroleum Geologists, Memoir 5, pp. 605-625.
Schumm, S.A., 1986. Alluvial river response to active tectonics, studies in geophysics, active tectonics. National Academy Press, Washington D.C., 80-94.
Schumm, S.A., Khan, H.R., 1972. Experimental study of channel patterns. Geol. Soc. Am. Bull. 83, 1755-1770.
Schumm, S.A., Dumont, J.E., Holbrook, J.M., 2000. Active tectonics and alluvial rivers. Cambridge University Press, 276p.
Smith, D.G., 1987. Meandering river point bar lithofacies models: Modern and Ancient examples compared: in Ethridge, F.G. et al., eds., Recent Developments in Fluvial Sedimentology: Soc. Econ. Paleont. Miner. Spec. Publ. 39, Tulsa, 83-91.
Stear, W.M., 1985. Comparison of the bedform distribution and dynamics of modern and ancient sandy ephemeral flood deposits in the southwestern Karoo region, South Africa. Sedim. Geol. 45, 209-230.
Steel, R.J., Thompson, D.B., 1983. Structures and textures in Triassic braided stream conglomerates (‘Bunter’ Pebble Beds) in the Sherwood Sandstone Group, North Straffordshire, England. Sedimentology 30, 341-367.
Sun, S.C., 1964. Photogeologic study of the Tainan-Kaohsiung coastal plain area, Taiwan. Petro. Geol. Taiwan 3, 39-51.
Sun, S.C., 1970. Photogeologic study of the Tainan-Hsinying coastal plain area, Taiwan. Petro. Geol. Taiwan 7, 133-144.
Sun, S.C., 1971. Photogeologic study of the Hsinying-Chiayi coastal plain area, Taiwan. Petro. Geol. Taiwan 8, 65-75.
Sun, S.C., 1972. Photogeologic study of the Peikang-Choshuichi coastal plain area, Taiwan. Petro. Geol. Taiwan 10, 187-199.
Suppe, J., 1981. Mechanics of mountain-building and metamorphism in Taiwan. Mem. Geol. Soc. China 4, 67-89.
Suppe, J., 1984. Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Mem. Geol. Soc. China 6, 21-33.
Teng, L.S., Yuan, P.B., Yu, N.T., Peng, C.H., 2000. Sequence stratigraphy of Taipei basin. Journal of Geological Society of China 43, no. 3, 497-520.
Terwindt, J.H.J., 1988. Palaeo-tidal reconstructions of inshore tidal depositional environments. In (eds) Tide-influenced Sedimentary Environments and Facies. In: De Boer, P.L., Van Gelder, A., Nio, S.D. (eds.), Tidal-influenced Sedimentary Environments and Facies. Reidel, Dordrecht, pp. 233-263.
van Wagoner, J.C., Posamentier, H.W., Mitchum, R.M., Jr., Vail, P.R., Sarg, J.F., Loutit, T.S., Hardenbol, J., 1988. An overview of the fundamentals of sequence stratigphy and key definition. In: Sea-Level Change: an Integrated Approach., ed. by Wilgus, C.K., Hastings, B.S., Kendall, C.G.St.C., Posamentier, H.W., Ross, C.A. and van Wagoner, J., Special Publication of Society of Economical Paleotologists and Mineralogists, no. 42, pp. 39-46.
van Wagoner, Mitchum, R.M., Jr., Campion, K.M., Rahmanian, V.D., 1990. Siliciclastic Sequence Stratigphy in Well Logs, Cores and Outcrops: Concepts for high-resolution Correlation of Time and Facies. American Association of Petroleum Geologists, Methods in Exploration series 7, 55p.
Walker, R.G., 1984. Facies models. 2nd Edition: Geoscience Canada, Reprint Series, 1, Anisworth Press, 317p.
Walker, R.G., James, N.P., 1992. Facies models : response to sea level change. Geological Association of Canada, 409p.
Walker, R.G., Plint, A.G., 1992. Wave- and storm-dominated shallow marine systems. In: Walker, R.G., James, N.P. (eds.), Facies Models: Response to Sea Level Change. Geol. Assoc. Can., Waterloo, Ontario, pp. 219-238.
Winn, R.D. Jr., Roberts, H.H., Fiilon, R.H., Bouma, A.H., Constans, R.E., 1995. Latest Quaternary deposition on the outer shelf, northern Gulf of Mexico, facies and sequence stratigphy from Main Pass Block 303 shallow core. Geological Society of America Bulletin 107, no. 7, 851-866.