簡易檢索 / 詳目顯示

研究生: 張瑋哲
Chang, Wei-Che
論文名稱: 二種不同型式阻力訓練對肌肉功能及保留效果之影響
Effects of two different types of resistance training on muscle function and maintenance
指導教授: 陳忠慶
Chen, Chung-Ching
王宏豪
Wang, Hung-Hao
口試委員: 陳忠慶
Chen, Chung-Ching
王宏豪
Wang, Hung-Hao
曾暐晉
Tseng, Wei-Chin
口試日期: 2025/01/23
學位類別: 碩士
Master
系所名稱: 體育與運動科學系
Department of Physical Education and Sport Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 55
中文關鍵詞: 向心/離心阻力訓練肌肉力量本體感覺
英文關鍵詞: concentric or eccentric resistance training, muscle strength, proprioception
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202500446
論文種類: 學術論文
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景:阻力訓練是常見的運動模式,包括向心阻力訓練 (concentric resistance training, CRT) 和離心阻力訓練 (eccentric resistance training, ERT),而短週期漸進式阻力訓練計劃可能有助於提高肌肉力量、肌肉肥大和功能,同時也能在復健計劃設計和運動表現改善方面具有重要意義。現代人的生活中常會因為多種原因 (例如:疫情因素) 必須停止身體活動一段時間,但何種阻力訓練型式可以對接受訓練肌肉群產生最佳的效果呢?哪一種阻力訓練之後,其維持肌肉力量、肌肉肥大和功能的效果會最佳呢?目的:1.針對單側股四頭肌群 (quadriceps femoris muscle,QF) 進行6週單純向心阻力訓練或單純離心阻力訓練對提升股四頭肌肉力量、肌肉肥大和功能的效果做比較,以釐清哪種阻力訓練型式產生的訓練效果會最佳;2. 比較6週停止訓練後,何種型式阻力訓練對股四頭肌肉力量、肌肉肥大和功能的維持或保留效果會最佳。方法:召募24名年輕健康男子為研究對象,並以隨機分派的方式分成向心阻力訓練組 (CRT;n = 12) 和離心阻力訓練組 (ERT;n = 12)。CRT及ERT的研究對象在腿伸肌阻力訓練機台上,分別接受CRT和ERT訓練。每位研究對象以每週訓練2天,每天一回合漸增強度,共30次 (50%-100% 1RM) 阻力訓練,接受為期6週的漸增強度阻力訓練。依變項計有:腿圍 (leg circumference, CIR)、位置覺 (position sense, PS)、關節釋放角度 (joint release angle, JRA)、力量覺 (force match, FM)、最大自主等長收縮肌力 (maximum voluntary isometric contraction, MVC)、等速向心肌力 (maximal isokinetic concentric strength) 與等速離心肌力 (maximal voluntary eccentric strength)。所有研究對象在前測、訓練後第4天,以及訓練後第2、4、6週各接受一次依變項測驗。結果:6週CRT及ERT皆能有效提升肌肉力量 (p <.05),且ERT在離心肌力的提升效果顯著優於CRT。腿圍和本體感覺則兩組間無顯著差異 (p >.05)。肌肉力量的保留效果,ERT顯著優於CRT (p <.05)。結論:本研究結果顯示,6週的CRT和ERT皆顯著提升最大等長肌力、向心肌力和離心肌力,並且ERT對於離心肌力的增加顯著大於CRT,並且在最大等長肌力、向心肌力和離心肌力的維持效果都優於CRT。

    Background: Resistance training is a common exercise modality, including concentric resistance training (CRT), eccentric resistance training (ERT), and short-term resistance training program may help enhance muscle strength, hypertrophy, and function, while also playing a significant role in rehabilitation program design and athletic performance improvement. Nowadays, it is commonly seen that people stop physical activity due to several reasons (e.g., epidemical factors) and that proposed the issues of the optimal type of resistance training to induce desirable effects on trained muscle, as well as the most effective resistance training program to preserve and maintain muscle function. In modern life, people often cease physical activity for a period due to various reasons (e.g., the impact of a pandemic). However, which type of resistance training produces the most training effects on the trained muscle groups? Furthermore, which type of resistance training is best for maintaining muscle strength, hypertrophy, and function after training program? Purposes: 1. To compare the effects of 6-week concentric-only or eccentric-only resistance training of the quadriceps femoris muscle (QF) on muscle strength, hypertrophy, and function to determine which type of resistance training produces the best training effect; 2. To compare effects of concentric-only and eccentric-only training on maintaining muscle function and performance. Methods: Twenty-four young healthy men were recruited and randomly assigned to the concentric resistance training group (CRT; n = 12) and the eccentric resistance training group (ERT; n = 12). Participants received either CRT or ERT on the same leg extension machine. The training protocol was scheduled for 2 days a week (30 repetitions 50%-100% 1RM) for 6 weeks. The following variables were used to determine muscle function and performance: upper thigh circumference (CIR), position sense (PS), joint reaction angle to release (JRA), force match (FM), maximum voluntary isometric (MVC), maximal isokinetic concentric strength and maximal voluntary eccentric strength of the quadriceps. Each participant will be asked to complete two preliminary and familiarization sessions and muscle function measurements after the program. The follow-up of measurements of maintaining muscle function and performance were measured every 2 weeks and last for 6 weeks after the last training session. Results: Both 6-week CRT and ERT significantly improved muscle strength (p < .05), with ERT showing a significantly greater improvement in eccentric muscle strength compared to CRT. There were no significant differences between the two groups in terms of leg circumference and proprioception (p > .05). The retention effect of muscle strength after training cessation was significantly better in the ERT group compared to the CRT group (p < .05). Conclusion: The results of this study indicate that both 6 weeks of CRT and ERT significantly improved maximum isometric, concentric and eccentric muscle strength. However, ERT led to a significantly greater increase in eccentric muscle strength compared to CRT, and it also demonstrated superior maintenance effects on maximum isometric, concentric, and eccentric muscle strength compared to CRT.

    摘要 i Abstract iii 目 次 v 表 次 vii 圖 次 viii 第壹章 緒論 1 第一節 前言 1 第二節 問題背景 1 第三節 研究目的 4 第四節 研究假設 4 第五節 操作性名詞定義解釋 4 第六節 研究重要性 6 第七節 研究範圍與限制 7 第貳章 文獻探討 8 第一節 骨骼肌做向心收縮與離心收縮之生理機轉之差異 8 第二節 向心阻力訓練與離心阻力訓練對肌力與肌肥大之影響 10 第三節 向心阻力訓練與離心阻力訓練對於本體感覺之影響 13 第四節 阻力訓練後,何種收縮類型能最大程度的維持訓練效果 15 第五節 本章總結 16 第參章 研究方法 18 第一節 研究對象 18 第二節 實驗流程 19 第三節 實驗方法與測量儀器 20 第四節 統計分析 24 第肆章 研究結果 25 第一節 受試者基本資料 25 第二節 向心和離心阻力訓練組在6週訓練前、後腿圍之差異 26 第三節 向心和離心阻力訓練組在6週訓練前、後位置覺之差異 27 第四節 向心和離心阻力訓練組在6週訓練前、後關節釋放角度之差異 28 第五節 向心和離心阻力訓練組在6週訓練前、後力量覺之差異 29 第六節 向心和離心阻力訓練組在6週訓練前、後最大自主等長收縮肌力之差異 30 第七節 向心和離心阻力訓練組在6週訓練前、後等速向心肌力之差異 31 第八節 向心和離心阻力訓練組在6週訓練前、後等速離心肌力之差異 32 第伍章 討論 33 第一節 向心和離心阻力訓練對腿圍之影響 33 第二節 向心和離心阻力訓練對本體感覺之影響 34 第三節 向心和離心阻力訓練對肌力之影響 36 第四節 結論與建議 39 參考文獻 40

    林瑞馨、林明儒(2016)。離心運動對本體感覺影響之探討。嘉大體育健康休閒期刊,15(1),149–160。
    周台英、謝忠展、曾國維、曾暐晉、許聖宗、陳忠慶、鄭立夫(2020)。遠紅外線照射對消除延遲性肌肉酸痛與本體感覺恢復之效果評估。體育學報,53(2),235–249。
    曾鈺婷(2023)。本體感覺與動作能力間之互惠性。體育學報,56(3),251–268。
    Aagaard, P., Simonsen, E., Andersen, J., Magnusson, S., Halkjaer-Kristensen, J., & Dyhre-Poulsen, P. (2000). Neural inhibition during maximal eccentric and concentric quadriceps contraction: Effects of resistance training. Journal of Applied Physiology, 89(6), 2249–2257.
    Aagaard, P. (2003). Training-induced changes in neural function. Exercise and Sport Sciences Reviews, 31(2), 61–67.
    Altun, M. (2019). Effects of 2 different external loads on joint position sense and the relationship between muscle strength and force sense. Journal of Sport Rehabilitation, 29(8), 1115–1120.
    Arazi, H., Asadi, A., Aziri, H., Asadi, A., Arazi, H., Asadi, A., & Asadi, A. (2011). Effects of 8 weeks equal-volume resistance training with different workout frequency on maximal strength, endurance and body composition. International Journal of Sports Science, 5(2), 112–118.
    Bamman, M. M., Shipp, J. R., Jiang, J., Gower, B. A., Hunter, G. R., Goodman, A., McLafferty, C. L., Jr., & Urban, R. J. (2001). Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans. American Journal of Physiology-Endocrinology and Metabolism, 280(3), E383–E390.
    Barash, I. A., Mathew, L., Ryan, A. F., Chen, J., & Lieber, R. L. (2004). Rapid muscle-specific gene expression changes after a single bout of eccentric contractions in the mouse. American Journal of Physiology-Cell Physiology, 286(2), C355–C364.
    Baroni, B. M., Pinto, R. S., Herzog, W., & Vaz, M. A. (2015). Eccentric resistance training of the knee extensor muscle: Training programs and neuromuscular adaptations. Isokinetics and Exercise Science, 23(3), 183–198.
    Barstow, I. K., Bishop, M. D., & Kaminski, T. W. (2003). Is enhanced-eccentric resistance training superior to traditional training for increasing elbow flexor strength? Journal of Sports Science and Medicine, 2(2), 62–69.
    Başkurt, Z., Başkurt, F., Gelecek, N., & Özkan, M. H. (2011). The effectiveness of scapular stabilization exercise in the patients with subacromial impingement syndrome. Journal of Back and Musculoskeletal Rehabilitation, 24(3), 173–179.
    Beltman, J., Sargeant, A., Van Mechelen, W., & De Haan, A. (2004). Voluntary activation level and muscle fiber recruitment of human quadriceps during lengthening contractions. Journal of Applied Physiology, 97(2), 619–626.
    Ben-Sira, D., Ayalon, A., & Tavi, M. (1995). The effect of different types of strength training on concentric strength in women. Journal of Strength and Conditioning Research, 9(3), 143–148.
    Bigland-Ritchie, B., & Woods, J. J. (1976). Integrated electromyogram and oxygen uptake during positive and negative work. The Journal of Physiology, 260(2), 267–277.
    Blazevich, A. J., Cannavan, D., Coleman, D. R., & Horne, S. (2007). Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. Journal of Applied Physiology, 103(5), 1565–1575.
    Blazevich, A. J., Horne, S., Cannavan, D., Coleman, D. R., & Aagaard, P. (2008). Effect of contraction mode of slow‐speed resistance training on the maximum rate of force development in the human quadriceps. Muscle and Nerve, 38(3), 1133–1146.
    Blocquiaux, S., Gorski, T., Van Roie, E., Ramaekers, M., Van Thienen, R., Nielens, H., Delecluse, C., De Bock, K., & Thomis, M. (2020). The effect of resistance training, detraining and retraining on muscle strength and power, myofibre size, satellite cells and myonuclei in older men. Experimental Gerontology, 133, 110860.
    Bosquet, L., Berryman, N., Dupuy, O., Mekary, S., Arvisais, D., Bherer, L., & Mujika, I. (2013). Effect of training cessation on muscular performance: A meta-analysis. Scandinavian Journal of Medicine andScience in Sports, 23(3), 140–149.
    Brandenburg, J. E., & Docherty, D. (2002). The effects of accentuated eccentric loading on strength, muscle hypertrophy, and neural adaptations in trained individuals. The Journal of Strength and Conditioning Research, 16(1), 25–32.
    Cappello, L., Elangovan, N., Contu, S., Khosravani, S., Konczak, J., & Masia, L. (2015). Robot-aided assessment of wrist proprioception. Frontiers in Human Neuroscience, 9, 198.
    Chen, H. L., Nosaka, K., & Chen, T. C. (2012). Muscle damage protection by low-intensity eccentric contractions remains for 2 weeks but not 3 weeks. European Journal of Applied Physiology, 112(2), 555–565.
    Chen, T. C., Nosaka, K., & Sacco, P. (2007). Intensity of eccentric exercise, shift of optimum angle, and the magnitude of repeated-bout effect. Journal of Applied Physiology, 102(3), 992–999.
    Chen, T. C., Lin, K. Y., Chen, H. L., Lin, M. J., & Nosaka, K. (2011). Comparison in eccentric exercise-induced muscle damage among four limb muscles. European Journal of Applied Physiology, 111, 211–223.
    Chen, T. C., Tseng, W. C., Huang, G. L., Chen, H. L., Tseng, K. W., & Nosaka, K. (2017). Superior effects of eccentric to concentric knee extensor resistance training on physical fitness, insulin sensitivity and lipid profiles of elderly men. Frontiers in Physiology, 8, 209.
    Chen, T. C., Huang, T. H., Tseng, W. C., Tseng, K. W., Hsieh, C. C., Chen, M. Y., Chou, T. Y., Huang, Y. C., Chen, H. L., & Nosaka, K. (2021). Changes in plasma C1q, apelin and adropin concentrations in older adults after descending and ascending stair walking intervention. Scientific Reports, 11(1), 17644.
    Chen, T. C., Huang, Y. C., Chou, T. Y., Hsu, S. T., Chen, M. Y., & Nosaka, K. (2023). Effects of far-infrared radiation lamp therapy on recovery from muscle damage induced by eccentric exercise. European Journal of Sport Science, 23(8), 1638–1646.
    Chou, T. Y., Nosaka, K., & Chen, T. C. (2021). Muscle damage and performance after single and multiple simulated matches in university elite female soccer players. International Journal of Environmental Research and Public Health, 18(8), 4134.
    Clarkson, P. M., Byrnes, W. C., McCormick, K. M., Turcotte, L. P., & White, J. S. (1986). Muscle soreness and serum creatine kinase activity following isometric, eccentric, and concentric exercise. International Journal of Sports Medicine, 7(3), 152–155.
    Clarkson, P. M., Nosaka, K., & Braun, B. (1992). Muscle function after exercise-induced muscle damage and rapid adaptation. Medicine and Science in Sports and Exercise, 24(5), 512–520.
    Coffey, V. G., & Hawley, J. A. (2007). The molecular bases of training adaptation. Sports Medicine, 37, 737–763.
    Colliander, E. B., & Tesch, P. A. (1990). Effects of eccentric and concentric muscle actions in resistance training. Acta Physiologica Scandinavica, 140(1), 31–39.
    Colliander, E. B., & Tesch, P. A. (1992). Effects of detraining following short term resistance training on eccentric and concentric muscle strength. Acta Physiologica Scandinavica, 144(1), 23–29.
    Cook, C. S., & McDonagh, M. J. (1995). Force responses to controlled stretches of electrically stimulated human muscle‐tendon complex. Experimental Physiology: Translation and Integration, 80(3), 477–490.
    Coratella, G., Milanese, C., & Schena, F. (2015). Cross-education effect after unilateral eccentric-only isokinetic vs dynamic constant external resistance training. Sport Sciences for Health, 11, 329–335.
    Coratella, G., & Schena, F. (2016). Eccentric resistance training increases and retains maximal strength, muscle endurance, and hypertrophy in trained men. Applied Physiology, Nutrition, and Metabolism, 41(11), 1184–1189.
    Docherty, C. L., Arnold, B. L., Zinder, S. M., Granata, K., & Gansneder, B. M. (2004). Relationship between two proprioceptive measures and stiffness at the ankle. Journal of Electromyography and Kinesiology, 14(3), 317–324.
    Douglas, J., Pearson, S., Ross, A., & McGuigan, M. (2017). Chronic adaptations to eccentric training: A systematic review. Sports Medicine, 47(5), 917–941.
    Duchateau, J., & Baudry, S. (2014). Insights into the neural control of eccentric contractions. Journal of Applied Physiology, 116(11), 1418–1425.
    Duchateau, J., & Enoka, R. M. (2016). Neural control of lengthening contractions. Journal of Experimental Biology, 219(2), 197–204.
    Duclay, J., Martin, A., Robbe, A., & Pousson, M. (2008). Spinal reflex plasticity during maximal dynamic contractions after eccentric training. Medicine and Science in Sports and Exercise, 40(4), 722–734.
    Duncan, P. W., Chandler, J. M., Cavanaugh, D. K., Johnson, K. R., & Buehler, A. G. (1989). Mode and speed specificity of eccentric and concentric exercise training. Journal of Orthopaedic and Sports Physical Therapy, 11(2), 70–75.
    Elangovan, N., Herrmann, A., & Konczak, J. (2014). Assessing proprioceptive function: Evaluating joint position matching methods against psychophysical thresholds. Physical Therapy, 94(4), 553–561.
    Eliasson, J., Elfegoun, T., Nilsson, J., Kohnke, R., Ekblom, B., & Blomstrand, E. (2006). Maximal lengthening contractions increase p70 S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply. American Journal of Physiology-Endocrinology and Metabolism, 291(6), E1197–E1205.
    Ellenbecker, T. S., Davies, G. J., & Rowinski, M. J. (1988). Concentric versus eccentric isokinetic strengthening of the rotator cuff: Objective data versus functional test. The American Journal of Sports Medicine, 16(1), 64–69.
    English, K. L., Loehr, J. A., Lee, S. M., & Smith, S. M. (2014). Early-phase musculoskeletal adaptations to different levels of eccentric resistance after 8 weeks of lower body training. European Journal of Applied Physiology, 114, 2263–2280.
    Enoka, R. M. (1996). Eccentric contractions require unique activation strategies by the nervous system. Journal of Applied Physiology, 81(6), 2339–2346.
    Fang, Y., Siemionow, V., Sahgal, V., Xiong, F., & Yue, G. H. (2004). Distinct brain activation patterns for human maximal voluntary eccentric and concentric muscle actions. Brain Research, 1023(2), 200–212.
    Farthing, J. P., & Chilibeck, P. D. (2003). The effect of eccentric training at different velocities on cross-education. European Journal of Applied Physiology, 89(6), 570–577.
    Feinstein, B., Lindegård, B., Nyman, E., & Wohlfart, G. (1955). Morphologic studies of motor units in normal human muscles. Cells Tissues Organs, 23(2), 127–142.
    Firat, T., & Uysal, Ö. (2018). Proprioception after elbow injury, surgery, and rehabilitation. In Proprioception in orthopaedics, sports medicine and rehabilitation (pp. 47–56). Springer Cham.
    Folland, J. P., & Williams, A. G. (2007). Morphological and neurological contributions to increased strength. Sports Medicine, 37, 145–168.
    Franchi, M. V., Atherton, P. J., Reeves, N. D., Flück, M., Williams, J., Mitchell, W. K., Selby, A., Beltran Valls, R. M., & Narici, M. V. (2014). Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiologica, 210(3), 642–654.
    Franchi, M. V., Reeves, N. D., & Narici, M. V. (2017). Skeletal muscle remodeling in response to eccentric vs. concentric loading: Morphological, molecular, and metabolic adaptations. Frontiers in Physiology, 8, 447.
    Friedmann-Bette, B., Bauer, T., Kinscherf, R., Vorwald, S., Klute, K., Bischoff, D., Müller, H., Weber, M. A., Metz, J., Kauczor, H. U., Bärtsch, P., & Billeter, R. (2010). Effects of strength training with eccentric overload on muscle adaptation in male athletes. European Journal of Applied Physiology, 108, 821–836.
    Friedmann, B., Kinscherf, R., Vorwald, S., Müller, H., Kucera, K., Borisch, S., Richter, G., Bärtsch, P., & Billeter, R. (2004). Muscular adaptations to computer-guided strength training with eccentric overload. Acta Physiologica Scandinavica, 182(1), 77–88.
    Gabriel, D. A., Kamen, G., & Frost, G. (2006). Neural adaptations to resistive exercise: Mechanisms and recommendations for training practices. Sports Medicine, 36, 133–149.
    Gibala, M. J., MacDougall, J. D., Tarnopolsky, M. A., Stauber, W. T., & Elorriaga, A. (1995). Changes in human skeletal muscle ultrastructure and force production after acute resistance exercise. Journal of Applied Physiology, 78(2), 702–708.
    Girardi, M., Casolo, A., Nuccio, S., Gattoni, C., & Capelli, C. (2020). Detraining effects prevention: A new rising challenge for athletes. Frontiers in Physiology, 11, 588784.
    Givoni, N. J., Pham, T., Allen, T. J., & Proske, U. (2007). The effect of quadriceps muscle fatigue on position matching at the knee. The Journal of Physiology, 584(1), 111–119.
    Gordon, A. M., Huxley, A. F., & Julian, F. J. (1966). The variation in isometric tension with sarcomere length in vertebrate muscle fibres. The Journal of Physiology, 184(1), 170–192.
    Gross, M., Lüthy, F., Kroell, J., Müller, E., Hoppeler, H., & Vogt, M. (2010). Effects of eccentric cycle ergometry in alpine skiers. International Journal of Sports Medicine, 31(8), 572–576.
    Häkkinen, K., Alen, M., Kallinen, M., Newton, R. U., & Kraemer, W. J. (2000). Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people. European Journal of Applied Physiology, 83, 51–62.
    Häkkinen, K., & Komi, P. V. (1983). Electromyographic changes during strength training and detraining. Medicine and Science in Sports and Exercise, 15(6), 455–460.
    Hather, B. M., Tesch, P. A., Buchanan, P., & Dudley, G. A. (1991). Influence of eccentric actions on skeletal muscle adaptations to resistance training. Acta Physiologica Scandinavica, 143(2), 177–185.
    Hawkins, S. A., Schroeder, E. T., Wiswell, R. A., Jaque, S. V., Marcell, T. J., & Costa, K. (1999). Eccentric muscle action increases site-specific osteogenic response. Medicine and Science in Sports and Exercise, 31(9), 1287–1292.
    Hazneci, B., Yildiz, Y., Sekir, U., Aydin, T., & Kalyon, T. A. (2005). Efficacy of isokinetic exercise on joint position sense and muscle strength in patellofemoral pain syndrome. American Journal of Physical Medicine and Rehabilitation, 84(7), 521–527.
    Hedayatpour, N., & Falla, D. (2015). Physiological and neural adaptations to eccentric exercise: Mechanisms and considerations for training. BioMed Research International, 2015(1), 193741.
    Herrington, L., Horsley, I., & Rolf, C. (2010). Evaluation of shoulder joint position sense in both asymptomatic and rehabilitated professional rugby players and matched controls. Physical Therapy in Sport, 11(1), 18–22.
    Higbie, E. J., Cureton, K. J., Warren III, G. L., & Prior, B. M. (1996). Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. Journal of Applied Physiology, 81(5), 2173–2181.
    Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London. Series B-Biological Sciences, 126(843), 136–195.
    Hillier, S., Immink, M., & Thewlis, D. (2015). Assessing proprioception: A systematic review of possibilities. Neurorehabilitation and Neural Repair, 29(10), 933–949.
    Hoppeler, H. (2014). Eccentric exercise: Physiology and application in sport and rehabilitation. Routledge.
    Hoppeler, H. (2016). Moderate load eccentric exercise; a distinct novel training modality. Frontiers in Physiology, 7, 483.
    Hortobágyi, T., Hill, J. P., Houmard, J. A., Fraser, D. D., Lambert, N. J., & Israel, R. G. (1996). Adaptive responses to muscle lengthening and shortening in humans. Journal of Applied Physiology, 80(3), 765–772.
    Hortobágyi, T., Dempsey, L., Fraser, D., Zheng, D., Hamilton, G., Lambert, J., & Dohm, L. (2000). Changes in muscle strength, muscle fibre size and myofibrillar gene expression after immobilization and retraining in humans. The Journal of Physiology, 524(1), 293–304.
    Housh, T. J., Housh, D. J., Weir, J. P., & Weir, L. L. (1996). Effects of unilateral concentric-only dynamic constant external resistance training. International Journal of Sports Medicine, 17(5), 338–343.
    Huxley, A. F. (1957). Muscle structure and theories of contraction. Progress in Biophysics and Biophysical Chemistry, 7, 255–318.
    Huxley, A. F., & Simmons, R. M. (1971). Proposed mechanism of force generation in striated muscle. Nature, 233(5321), 533–538.
    Hyldahl, R. D., & Hubal, M. J. (2014). Lengthening our perspective: Morphological, cellular, and molecular responses to eccentric exercise. Muscle and Nerve, 49(2), 155–170.
    Isner-Horobeti, M. E., Dufour, S. P., Vautravers, P., Geny, B., Coudeyre, E., & Richard, R. (2013). Eccentric exercise training: Modalities, applications and perspectives. Sports Medicine, 43(6), 483–512.
    Jones, D., Round, J., & De Haan, A. (2006). Skeletal muscle: From molecules to movement. British Journal of Sports Medicine, 40(11), 950–951.
    Kaminski, T. W., Wabbersen, C. V., & Murphy, R. M. (1998). Concentric versus enhanced eccentric hamstring strength training: Clinical implications. Journal of Athletic Training, 33(3), 216–221.
    Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S., Hudspeth, A. J., & Mack, S. (Eds.). (2000). Principles of Neural Science (4th ed., pp. 1227–1246). McGraw-Hill.
    Katz, B. (1939). The relation between force and speed in muscular contraction. The Journal of Physiology, 96(1), 45–64.
    Kay, A. D., Blazevich, A. J., Fraser, M., Ashmore, L., & Hill, M. W. (2020). Isokinetic eccentric exercise substantially improves mobility, muscle strength and size, but not postural sway metrics in older adults, with limited regression observed following a detraining period. European Journal of Applied Physiology, 120(11), 2383–2395.
    Kaynak, H., Altun, M., & Tok, S. (2020). Effect of force sense to active joint position sense and relationships between active joint position sense, force sense, jumping and muscle strength. Journal of Motor Behavior, 52(3), 342–351.
    Komi, P. V., & Buskirk, E. R. (1972). Effect of eccentric and concentric muscle conditioning on tension and electrical activity of human muscle. Ergonomics, 15(4), 417–434.
    Konow, N., & Roberts, T. J. (2015). The series elastic shock absorber: Tendon elasticity modulates energy dissipation by muscle during burst deceleration. Proceedings. Biological Sciences, 282(1804), 20142800.
    Lin, M. J., Nosaka, K., Ho, C. C., Chen, H. L., Tseng, K. W., Ratel, S., & Chen, T. C. C. (2018). Influence of maturation status on eccentric exercise-induced muscle damage and the repeated bout effect in females. Frontiers in Physiology, 8, 1118.
    Lubiatowski, P., Olczak, I., Lisiewicz, E., Ogrodowicz, P., Bręborowicz, M., & Romanowski, L. (2014). Elbow joint position sense after total elbow arthroplasty. Journal of Shoulder and Elbow Surgery, 23(5), 693–700.
    Maddox, E. U., & Bennett, H. J. (2021). Effects of external load on sagittal and frontal plane lower extremity biomechanics during back squats. Journal of Biomechanical Engineering, 143(5), 051006.
    Maeo, S., Shan, X., Otsuka, S., Kanehisa, H., & Kawakami, Y. (2018). Neuromuscular adaptations to work-matched maximal eccentric versus concentric training. Medicine and Science in Sports and Exercise, 50(8), 1629–1640.
    Malliaras, P., Kamal, B., Nowell, A., Farley, T., Dhamu, H., Simpson, V., Morrissey, D., Langberg, H., Maffulli, N., & Reeves, N. D. (2013). Patellar tendon adaptation in relation to load-intensity and contraction type. Journal of Biomechanics, 46(11), 1893–1899.
    Mannheimer, J. S. (1969). A comparison of strength gain between concentric and eccentric contractions. Physical Therapy, 49(11), 1201–1207.
    Markus, I., Constantini, K., Hoffman, J. R., Bartolomei, S., & Gepner, Y. (2021). Exercise-induced muscle damage: Mechanism, assessment and nutritional factors to accelerate recovery. European Journal of Applied Physiology, 121, 969–992.
    McHugh, M. P. (2003). Recent advances in the understanding of the repeated bout effect: The protective effect against muscle damage from a single bout of eccentric exercise. Scandinavian Journal of Medicine and Science in Sports, 13(2), 88–97.
    Methenitis, S., Theodorou, A. A., Chatzinikolaou, P. N., Margaritelis, N. V., Nikolaidis, M. G., & Paschalis, V. (2023). The effects of chronic concentric and eccentric training on position sense and joint reaction angle of the knee extensors. European Journal of Sport Science, 23(7), 1164–1174.
    Miller, L. E., Pierson, L. M., Nickols-Richardson, S. M., Wootten, D. F., Selmon, S. E., Ramp, W. K., & Herbert, W. G. (2006). Knee extensor and flexor torque development with concentric and eccentric isokinetic training. Research Quarterly for Exercise and Sport, 77(1), 58–63.
    Mont, M. A., Cohen, D. B., Campbell, K. R., Gravare, K., & Mathur, S. K. (1994). Isokinetic concentric versus eccentric training of shoulder rotators with functional evaluation of performance enhancement in elite tennis players. The American Journal of Sports Medicine, 22(4), 513–517.
    Moore, D. R., Young, M., & Phillips, S. M. (2012). Similar increases in muscle size and strength in young men after training with maximal shortening or lengthening contractions when matched for total work. European Journal of Applied Physiology, 112, 1587–1592.
    Mujika, I., & Padilla, S. (2000a). Detraining: Loss of training-induced physiological and performance adaptations. Part I: Short term insufficient training stimulus. Sports Medicine, 30, 79–87.
    Mujika, I., & Padilla, S. (2000b). Detraining: Loss of training-induced physiological and performance adaptations. Part II: Long term insufficient training stimulus. Sports Medicine, 30(3), 145–154.
    Narici, M., Vito, G. D., Franchi, M., Paoli, A., Moro, T., Marcolin, G., Grassi, B., Baldassarre, G., Zuccarelli, L., Biolo, G., Di Girolamo, F. G., Fiotti, N., Dela, F., Greenhaff, P., & Maganaris, C. (2021). Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures. European Journal of Sport Science, 21(4), 614–635.
    Nickols-Richardson, S. M., Miller, L. E., Wootten, D. F., Ramp, W. K., & Herbert, W. G. (2007). Concentric and eccentric isokinetic resistance training similarly increases muscular strength, fat-free soft tissue mass, and specific bone mineral measurements in young women. Osteoporosis International, 18, 789–796.
    Norrbrand, L., Fluckey, J. D., Pozzo, M., & Tesch, P. A. (2008). Resistance training using eccentric overload induces early adaptations in skeletal muscle size. European Journal of Applied Physiology, 102, 271–281.
    Nosaka, K., Sakamoto, K., Newton, M., & Sacco, P. (2001). How long does the protective effect on eccentric exercise-induced muscle damage last? Medicine and Science in Sports and Exercise, 33(9), 1490–1495.
    Nuzzo, J. L., Pinto, M. D., Nosaka, K., & Steele, J. (2023). The eccentric: Concentric strength ratio of human skeletal muscle in vivo: Meta-analysis of the influences of sex, age, joint action, and velocity. Sports Medicine, 53(6), 1125–1136.
    Panics, G., Tallay, A., Pavlik, A., & Berkes, I. (2008). Effect of proprioception training on knee joint position sense in female team handball players. British Journal of Sports Medicine, 42(6), 472–476.
    Parpucu, T. İ., Algun, C., Toprak, U., & Türkoğlu, S. (2023). The effects of eccentric-concentric isokinetic muscle strength training on quadriceps femoris muscle architecture, muscle strength and proprioception in healthy young people. Online Turkish Journal of Health Sciences, 8(3), 350–357.
    Paschalis, V., Nikolaidis, M. G., Giakas, G., Jamurtas, A. Z., Pappas, A., & Koutedakis, Y. (2007). The effect of eccentric exercise on position sense and joint reaction angle of the lower limbs. Muscle and Nerve, 35(4), 496–503.
    Paschalis, V., Nikolaidis, M. G., Giakas, G., Jamurtas, A. Z., Owolabi, E. O., & Koutedakis, Y. (2008). Position sense and reaction angle after eccentric exercise: The repeated bout effect. European Journal of Applied Physiology, 103, 9–18.
    Paschalis, V., Nikolaidis, M. G., Giakas, G., Jamurtas, A. Z., & Koutedakis, Y. (2009). Differences between arms and legs on position sense and joint reaction angle. The Journal of Strength and Conditioning Research, 23(6), 1652–1655.
    Paschalis, V., Nikolaidis, M. G., Theodorou, A. A., Deli, C. K., Raso, V., Jamurtas, A. Z., Giakas, G., & Koutedakis, Y. (2013). The effects of eccentric exercise on muscle function and proprioception of individuals being overweight and underweight. The Journal of Strength and Conditioning Research, 27(9), 2542–2551.
    Paschalis, V., Nikolaidis, M. G., Theodorou, A. A., Giakas, G., Jamurtas, A. Z., & Koutedakis, Y. (2010). Eccentric exercise affects the upper limbs more than the lower limbs in position sense and reaction angle. Journal of Sports Sciences, 28(1), 33–43.
    Pensini, M., Martin, A., & Maffiuletti, N. A. (2002). Central versus peripheral adaptations following eccentric resistance training. International Journal of Sports Medicine, 23(8), 567–574.
    Prochazka, A. (2011). Proprioceptive feedback and movement regulation. In L. B. Rowell & J. T. Shepherd (Eds.), Comprehensive Physiology (pp. 89–127). American Physiological Society.
    Proske, U., Gregory, J. E., Morgan, D. L., Percival, P., Weerakkody, N. S., & Canny, B. J. (2004). Force matching errors following eccentric exercise. Human Movement Science, 23(3–4), 365–378.
    Proske, U., & Gandevia, S. C. (2012). The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiological Reviews, 92(4), 1651–1697.
    Reeves, N. D., Maganaris, C. N., Longo, S., & Narici, M. V. (2009). Differential adaptations to eccentric versus conventional resistance training in older humans. Experimental Physiology, 94(7), 825–833.
    Riemann, B. L., & Lephart, S. M. (2002). The sensorimotor system, part I: The physiologic basis of functional joint stability. Journal of Athletic Training, 37(1), 71–79.
    Rogol, I. M., Ernst, G., & Perrin, D. H. (1998). Open and closed kinetic chain exercises improve shoulder joint reposition sense equally in healthy subjects. Journal of Athletic Training, 33(4), 315–318.
    Roig, M., O'Brien, K., Kirk, G., Murray, R., McKinnon, P., Shadgan, B., & Reid, W. D. (2009). The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: A systematic review with meta-analysis. British Journal of Sports Medicine, 43(8), 556–568.
    Rosker, J., & Sarabon, N. (2010). Kinaesthesia and methods for its assessment: Literature review. Sport Science Review, 19(5–6), 165–189.
    Salles, J. I., Velasques, B., Cossich, V., Nicoliche, E., Ribeiro, P., Amaral, M. V., & Motta, G. (2015). Strength training and shoulder proprioception. Journal of Athletic Training, 50(3), 277–280.
    Sato, S., Yoshida, R., Kiyono, R., Yahata, K., Yasaka, K., Nosaka, K., & Nakamura, M. (2021). Cross-education and detraining effects of eccentric vs. concentric resistance training of the elbow flexors. BMC Sports Science, Medicine and Rehabilitation, 13, 1–12.
    Schoenfeld, B. J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. The Journal of Strength and Conditioning Research, 24(10), 2857–2872.
    Schoenfeld, B. J., Ogborn, D. I., Vigotsky, A. D., Franchi, M. V., & Krieger, J. W. (2017). Hypertrophic effects of concentric vs. eccentric muscle actions: A systematic review and meta-analysis. The Journal of Strength and Conditioning Research, 31(9), 2599–2608.
    Schoenfeld, B. J. (2012). Does exercise-induced muscle damage play a role in skeletal muscle hypertrophy? The Journal of Strength and Conditioning Research, 26(5), 1441–1453.
    Schoenfeld, B. J. (2020). Science and Development of Muscle Hypertrophy (2nd ed.). Human Kinetics.
    Seger, J. Y., Arvidsson, B., & Thorstensson, A. (1998). Specific effects of eccentric and concentric training on muscle strength and morphology in humans. European Journal of Applied Physiology and Occupational Physiology, 79, 49–57.
    Shepstone, T. N., Tang, J. E., Dallaire, S., Schuenke, M. D., Staron, R. S., & Phillips, S. M. (2005). Short-term high- vs. low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. Journal of Applied Physiology, 98(5), 1768–1776.
    Spudić, D., & Nosaka, K. (2024). Systematic review and meta-analysis of eccentric-only versus concentric-only strength training effects on maximal voluntary eccentric, concentric and isometric contraction strength [Preprint]. Research Square.
    Spurway, N. C., Watson, H., McMillan, K., & Connolly, G. (2000). The effect of strength training on the apparent inhibition of eccentric force production in voluntarily activated human quadriceps. European Journal of Applied Physiology, 82, 374–380.
    Tallent, J., Goodall, S., Gibbon, K. C., Hortobágyi, T., & Howatson, G. (2017). Enhanced corticospinal excitability and volitional drive in response to shortening and lengthening strength training and changes following detraining. Frontiers in Physiology, 8, 57.
    Tomberlin, J. P., Basford, J. R., Schwen, E. E., Orte, P. A., Scott, S. G., Laughman, R. K., & Ilstrup, D. M. (1991). Comparative study of isokinetic eccentric and concentric quadriceps training. Journal of Orthopaedic and Sports Physical Therapy, 14(1), 31–36.
    Tseng, K. W., Tseng, W. C., Lin, M. J., Chen, H. L., Nosaka, K., & Chen, T. C. (2016). Protective effect by maximal isometric contractions against maximal eccentric exercise-induced muscle damage of the knee extensors. Research in Sports Medicine, 24(3), 228–241.
    Tseng, W. C., Nosaka, K., Tseng, K. W., Chou, T. Y., & Chen, T. C. (2020). Contralateral effects by unilateral eccentric versus concentric resistance training. Medicine and Science in Sports and Exercise, 52(2), 474–483.
    Valdes, O., Ramirez, C., Perez, F., Garcia‐Vicencio, S., Nosaka, K., & Penailillo, L. (2021). Contralateral effects of eccentric resistance training on immobilized arm. Scandinavian Journal of Medicine and Science in Sports, 31(1), 76–90.
    Vangsgaard, S., Taylor, J. L., Hansen, E. A., & Madeleine, P. (2014). Changes in H reflex and neuromechanical properties of the trapezius muscle after 5 weeks of eccentric training: A randomized controlled trial. Journal of Applied Physiology, 116(12), 1623–1631.
    Vikne, H., Refsnes, P. E., Ekmark, M., Medbø, J. I., Gundersen, V., & Gundersen, K. (2006). Muscular performance after concentric and eccentric exercise in trained men. Medicine and Science in Sports and Exercise, 38(10), 1770–1781.
    Vila-Chã, C., Riis, S., Lund, D., Møller, A., Farina, D., & Falla, D. (2011). Effect of unaccustomed eccentric exercise on proprioception of the knee in weight and non-weight bearing tasks. Journal of Electromyography and Kinesiology, 21(1), 141–147.
    von Holst, E. (1973). The Reafference Principle (R. Martin, Trans.). In The selected papers by Erich von Holst (Vol. 1, pp. 139–173). Methuen.
    Wernbom, M., Augustsson, J., & Thomeé, R. (2007). The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Medicine, 37, 225–264.
    Westing, S. H., Cresswell, A. G., & Thorstensson, A. (1991). Muscle activation during maximal voluntary eccentric and concentric knee extension. European Journal of Applied Physiology and Occupational Physiology, 62, 104–108.
    Wilmore, J. H., Costill, D. L., & Kenney, W. L. (2004). Physiology of Sport and Exercise (4th ed.). Human Kinetics.
    Wojtys, E. M. (2017). Sports injury prevention. Sports Health, 9(2), 106–107.
    Yamanaka, T., Farley, R. S., & Caputo, J. L. (2012). Occlusion training increases muscular strength in Division IA football players. The Journal of Strength and Conditioning Research, 26(9), 2523–2529.
    Yarrow, J. F., Borsa, P. A., Borst, S. E., Sitren, H. S., Stevens, B. R., & White, L. J. (2008). Early-phase neuroendocrine responses and strength adaptations following eccentric-enhanced resistance training. The Journal of Strength and Conditioning Research, 22(4), 1205–1214.

    下載圖示
    QR CODE