簡易檢索 / 詳目顯示

研究生: 陳盈君
Ying-Jun, Chen
論文名稱: 缺陷工程提升鐵電材料Sn2P2S6光催化二氧化碳還原反應之探討
Defect Engineering Enhances Photocatalytic CO2 Reduction Performance of Ferroelectric Sn2P2S6
指導教授: 陳家俊
Chen, Chia-Chun
口試委員: 陳家俊
Chen, Chia-Chun
陳俊維
Chen, Chun-Wei
郭聰榮
Kuo, Tsung-Rong
王迪彥
Wang, Di-Yan
口試日期: 2023/07/10
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 60
中文關鍵詞: 光催化二氧化碳還原反應缺陷工程自旋極化Sn2P2S6
英文關鍵詞: photocatalytic carbon dioxide reduction, Sn2P2S6, defect engineering, spin polarization
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301070
論文種類: 學術論文
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用太陽能將二氧化碳轉化為碳氫燃料,是一種有望同時解決全球暖化和能源供應問題的方式。本研究以Sn2P2S6作為光催化劑,進行二氧化碳還原反應。Sn2P2S6做為二維材料中過渡金屬硫化物的一員,具有合適的能帶結構,可以吸收可見光以進行二氧化碳的還原。其較大的表面積也為吸附二氧化碳帶來許多活性位點。此外,層狀結構也使得光生電子-電洞對可以快速遷移至表面進行反應。綜合以上優點,我們認為Sn2P2S6擁有光催化二氧化碳還原的潛力。而光催化結果顯示,Sn2P2S6對於甲烷有高的選擇性,產率為33.90 μmol g-1 (6h)。缺陷工程是目前改善光催化劑效果的重大策略之一。通過引入缺陷,我們可以有效調節材料內部的電子結構,改善材料吸收可見光的範圍,並降低電子與電洞的再結合。除此之外,還能為材料表面帶來更多的活性位點。本研究以高溫加熱的方式在Sn2P2S6表面引入硫缺陷,以增強光催化劑的效果。實驗結果顯示,在引入缺陷後,光催化劑的效率提高到47.60 μmol g-1 (6h),相較於原始的Sn2P2S6催化劑效果更好。另外,先前文獻提出,引入缺陷可導致材料產生自旋極化的現象。因此,我們透過加入磁場的方式進一步增加自旋極化的電子,進而提高光催化的效果,最終產率達到57.52 μmol g-1 (6h)。

    Converting carbon dioxide into hydrocarbon fuels using solar energy is a promising approach to simultaneously address global warming and energy supply issues. In this study, Sn2P2S6 was used as a photocatalyst for the reduction of carbon dioxide. As a member of two-dimensional transition metal sulfides, Sn2P2S6 has a suitable band structure to absorb visible light for carbon dioxide reduction and its large surface area provides numerous active sites for carbon dioxide adsorption. Additionally, its layered structure facilitates the rapid migration of photogenerated electron-hole pairs to the surface for reactions. Based on the above advantages, we believe that Sn2P2S6 has great potential as a photocatalyst. The photocatalytic results showed that Sn2P2S6 exhibited high selectivity for methane with a yield of 33.90 μmol g-1 (6h). Defect engineering is a significant strategy to improve the performance of photocatalysts. By introducing defects, we can effectively modulate the electronic structure, enhance visible light absorption, and reduce electron-hole recombination. Moreover, it can introduce more active sites on the material's surface. In this study, we introduced sulfur defects on the surface of Sn2P2S6 through high-temperature heating to enhance the photocatalyst's efficiency. Experimental results demonstrated that the efficiency of the photocatalyst increased to 47.60 μmol g-1 (6h) after defect introduction, which is better than that of the pristine Sn2P2S6. Furthermore, previous literature has proposed that defect introduction can induce spin polarization. Therefore, we further increased spin-polarized electrons by introducing a magnetic field, thereby improving the photocatalytic effect, and the final yield reached 57.52 μmol g-1 (6h).

    第一章 緒論 1 1-1 前言 1 1-2 光催化二氧化碳還原反應介紹 3 1-2-1發展動機 3 1-2-2二氧化碳還原反應 4 1-2-3光催化反應機制 5 第二章 文獻回顧與動機 7 2-1 二維材料在光催化上的優勢 7 2-2 過渡金屬硫化物介紹 9 2-2-1過渡金屬二硫化物 10 2-2-2磁性元素硫族化物 11 2-2-3過渡金屬含磷硫族化物 11 2-3 二氧化碳還原反應催化劑的修飾與設計 13 2-3-1結構調控 13 2-3-2表面修飾 14 2-3-3摻雜 15 2-3-4異質結構 15 2-3-5表面缺陷工程 16 2-4 表面缺陷工程提高光催化效率 18 2-4-1擴展光吸收波長範圍 18 2-4-2提高載流子的分離和傳輸效率 19 2-4-3操控表面氧化還原反應 20 2-4-4缺陷誘導自旋極化 21 2-5 磁場增強自旋極化 23 2-6 Sn2P2S6特性與文獻回顧 24 2-6-1結構 24 2-6-2光電特性 24 2-6-2鐵電性質 25 2-7 研究動機 27 第三章 儀器設備 28 3-1 X射線繞射儀(X Ray Diffractometer) 28 3-2 拉曼光譜儀(Raman Spectroscopy) 29 3-3 紫外-可見-近紅外光分光光譜儀(UV-Vis-NIR Spectrophotometer) 30 3-4 電子順磁共振光譜儀(Electron Paramagnetic Resonance Spectrometer) 31 3-5 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy) 32 3-6 掃描式電子顯微鏡(Scanning Electron Microscope) 33 3-7 氣相層析質譜儀 34 第四章 實驗方法 35 4-1 Sn2P2S6晶體合成 35 4-2 硫缺陷製造 36 4-3 二氧化碳還原反應樣品製備 36 4-4 二氧化碳還原反應系統 37 第五章 結果與討論 38 5-1 Sn2P2S6結構與性質鑑定 38 5-1-1結構與形貌分析 38 5-1-2光學性質 40 5-1-3元素分析 43 5-2 Sn2P2S6光催化表現 44 5-3 Vs-Sn2P2S6結構鑑定與性質鑑定 45 5-3-1結構及光學鑑定 45 5-3-3缺陷分析 48 5-4 缺陷材料光催化表現 52 5-5 磁場增強光催化表現 53 5-6 與其他缺陷材料的比較 54 第六章 結論與未來展望 55 參考文獻 56

    NASA Climate Change Vital Signs Carbon Dioxide. https://climate.nasa.gov/vital-signs/carbon-dioxide/
    Wu, J.; Huang, Y.; Ye, W.; Li, Y. CO2 Reduction: From the Electrochemical to Photochemical Approach. Adv. Sci. 2017, 4, 1700194.
    Barber, J. Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev. 2009, 38, 185-196.
    Zumdahl, S. S.; DeCoste, D. J. Chemical Principles 8th edition 2017, CENGAGE. Learning: USA.
    Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders. Nature 1979, 277, 637–638.
    Li, T.; Huang, H.; Wang, S.; Mi, Y.; Zhang, Y. Recent advances in 2D semiconductor nanomaterials for photocatalytic CO2 reduction. Nano Res. 2023.
    Gao, F.-Y.; Wu, Z.-Z.; Gao, M.-R. Electrochemical CO2 Reduction on Transition-Metal Chalcogenide Catalysts: Recent Advances and Future Perspectives. Energy & Fuels 2021, 35, 12869–12883.
    Wang, P.; Yang, Y.; Pan, E.; Liu, F.; Ajayan, P. M.; Zhou, J.; Liu, Z. Emerging Phases of Layered Metal Chalcogenides. Small 2022, 18, e2105215.
    Tu, W.; Li, Y.; Kuai, L.; Zhou, Y.; Xu, Q.; Li, H.; Wang, X.; Xiao, M.; Zou, Z. Construction of unique two-dimensional MoS2-TiO2 hybrid nanojunctions: MoS2 as a promising cost-effective cocatalyst toward improved photocatalytic reduction of CO2 to methanol. Nanoscale 2017, 9, 9065–9070.
    Ali, A.; Oh, W. C. Preparation of Nanowire like WSe2-Graphene Nanocomposite for Photocatalytic Reduction of CO2 into CH3OH with the Presence of Sacrificial Agents. Sci. Rep. 2017, 7, 1867.
    Fei, Z.; Huang, B.; Malinowski, P.; Wang, W.; Song, T.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X.; May, A. F.; et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782.
    Wang, F.; MG Sendeku. Two-Dimensional Metal Phosphorus Trichalcogenide Nanostructure for Sustainable Energy Conversion. ACS Symp. Ser. Vol. 1421, 1–25.
    Gao, W.; Li, S.; He, H.; Li, X.; Cheng, Z.; Yang, Y.; Wang, J.; Shen, Q.; Wang, X.; Xiong, Y.; et al. Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas. Nat. Commun. 2021, 12, 4747.
    Albero, J.; Peng, Y.; García, H. Photocatalytic CO2 Reduction to C2+ Products. ACS. Catal. 2020, 10, 5734–5749.
    Di, J.; Xiong, J.; Li, H.; Liu, Z. Ultrathin 2D Photocatalysts: Electronic-Structure Tailoring, Hybridization, and Applications. Adv. Mater. 2018, 30 ,1704548.
    Bai, Y.; Yang, P.; Wang, L.; Yang, B.; Xie, H.; Zhou, Y.; Ye, L. Ultrathin Bi4O5Br2 nanosheets for selective photocatalytic CO2 conversion into CO. J. Chem. Eng. 2019, 360, 473–482.
    Kuehnel, M. F.; Sahm, C. D.; Neri, G.; Lee, J. R.; Orchard, K. L.; Cowan, A. J.; Reisner, E. ZnSe quantum dots modified with a Ni(cyclam) catalyst for efficient visible-light driven CO2 reduction in water. Chem. Sci. 2018, 9, 2501–2509.
    Wang, J.; Xia, T.; Wang, L.; Zheng, X.; Qi, Z.; Gao, C.; Zhu, J.; Li, Z.; Xu, H.; Xiong, Y. Enabling Visible-Light-Driven Selective CO2 Reduction by Doping Quantum Dots: Trapping Electrons and Suppressing H2 Evolution. Angew. Chem. Int. Ed. Engl. 2018, 57, 16447–16451.
    Jiang, Z.; Wan, W.; Li, H.; Yuan, S.; Zhao, H.; Wong, P. K. A Hierarchical Z-Scheme alpha-Fe2O3 /g-C3N4 Hybrid for Enhanced Photocatalytic CO2 Reduction. Adv. Mater. 2018, 30, 1706108.
    Di, J.; Chen, C.; Zhu, C.; Song, P.; Xiong, J.; Ji, M.; Zhou, J.; Fu, Q.; Xu, M.; Hao, W.; et al. Bismuth Vacancy-Tuned Bismuth Oxybromide Ultrathin Nanosheets toward Photocatalytic CO2 Reduction. ACS Appl. Mater. Interfaces 2019, 11, 30786–30792.
    Shi, H.; Long, S.; Hou, J.; Ye, L.; Sun, Y.; Ni, W.; Song, C.; Li, K.; Gurzadyan, G. G.; Guo, X. Defects Promote Ultrafast Charge Separation in Graphitic Carbon Nitride for Enhanced Visible-Light-Driven CO2 Reduction Activity. Chem. Eur. J. 2019, 25, 5028–5035.
    Yu, H.; Li, J.; Zhang, Y.; Yang, S.; Han, K.; Dong, F.; Ma, T.; Huang, H. Three-in-One Oxygen Vacancies: Whole Visible-Spectrum Absorption, Efficient Charge Separation, and Surface Site Activation for Robust CO2 Photoreduction. Angew. Chem. Int. Ed. Engl. 2019, 58, 3880–3884.
    Li, X.; Sun, Y.; Xu, J.; Shao, Y.; Wu, J.; Xu, X.; Pan, Y.; Ju, H.; Zhu, J.; Xie, Y. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 2019, 4, 690–699.
    Wu, S.-M.; Liu, X.-L.; Lian, X.-L.; Tian, G.; Janiak, C.; Zhang, Y.-X.; Lu, Y.; Yu, H.-Z.; Hu, J.; Wei, H.; et al. Homojunction of Oxygen and Titanium Vacancies and its Interfacial n-p Effect. Adv. Mater. 2018, 30, 1802173.
    Pan, L.; Wang, S.; Mi, W.; Song, J.; Zou, J.-J.; Wang, L.; Zhang, X. Undoped ZnO abundant with metal vacancies. Nano Energy 2014, 9, 71-79.
    Pan, L.; Ai, M.; Huang, C.; Yin, L.; Liu, X.; Zhang, R.; Wang, S.; Jiang, Z.; Zhang, X.; Zou, J.-J.; et al. Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nat. Commun. 2020, 11, 418.
    Sendeku, M. G.; Wang, F.; Cheng, Z.; Yu, P.; Gao, N.; Zhan, X.; Wang, Z.; He, J. Nonlayered Tin Thiohypodiphosphate Nanosheets: Controllable Growth and Solar-Light-Driven Water Splitting. ACS Appl. Mater. Interfaces 2021, 13, 13392–13399.
    Li, S.; Zhao, Z.; Zhao, J.; Zhang, Z.; Li, X.; Zhang, J. Recent Advances of Ferro-, Piezo-, and Pyroelectric Nanomaterials for Catalytic Applications. ACS Appl. Nano Mater. 2020, 3, 2, 1063–1079.
    Huang, S.; Meng, C.; Xiao, M.; Ren, S.; Wang, S.; Han, D.; Sun, L.; Meng, Y. Is superparelectric 2-dimensional Sn2P2S6 having a “higher dielectric constant” desirable for more real Na+ pseudocapacitance? Nano Energy 2019, 61, 462–470.
    Huang, S.; Meng, C.; Xiao, M.; Ren, S.; Wang, S.; Han, D.; Li, Y.; Meng, Y. Pseudocapacitive Sodium Storage by Ferroelectric Sn2P2S6 with Layered Nanostructure. Small 2018, 14, 1704367.
    Du, C.; Zhang, Q.; Lin, Z.; Yan, B.; Xia, C.; Yang, G. Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2019, 248, 193–201.
    Tang, J.-Y.; Kong, X. Y.; Ng, B.-J.; Chew, Y.-H.; Mohamed, A. R.; Chai, S.-P. Midgap-state-mediated two-step photoexcitation in nitrogen defect-modified g-C3N4 atomic layers for superior photocatalytic CO2 reduction. Catal. Sci. Technol. 2019, 9, 2335–2343.
    Hu, B.; Hu, M.; Guo, Q.; Wang, K.; Wang, X. In-vacancy engineered plate-like In(OH)3 for effective photocatalytic reduction of CO2 with H2O vapor. Appl. Catal. B: Environ. 2019, 253, 77–87.
    Kong, X. Y.; Lee, W. P. C.; Ong, W.-J.; Chai, S.-P.; Mohamed, A. R. Oxygen-Deficient BiOBr as a Highly Stable Photocatalyst for Efficient CO2Reduction into Renewable Carbon-Neutral Fuels. ChemCatChem 2016, 8, 3074–3081.

    無法下載圖示 電子全文延後公開
    2028/06/30
    QR CODE