研究生: |
鄭元凱 Yuan-Kai Cheng |
---|---|
論文名稱: |
阿達瑪轉換/氣相層析質譜術對揮發性氣體偵測法的開發與研究 Applications of Hadamard transform-gas chromatography/mass spectrometry (HT-GC/MS) to volatile organic compounds (VOCs) |
指導教授: |
林震煌
Lin, Cheng-Huang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 阿達瑪轉換 、呼出氣體 、六甲基二矽氧烷 、氣相層析質譜術 |
英文關鍵詞: | Hadamard Transfer, Exhaled breath, HMDSO, GC/MS |
論文種類: | 學術論文 |
相關次數: | 點閱:182 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用阿達瑪轉換/氣相層析質譜術 (HT-GC/MS) 成功偵測到人體呼出氣體內及晶圓廠中無塵室內的揮發性有機氣體。將編碼的層析圖譜阿達瑪轉換後與大多數 GC/MS 系統單次進樣比較,可使得訊號與雜訊比值 (signal-to-noise ratio) 大幅提升。在第一個飲酒者的呼出氣體情況下,使用傳統單次進樣得到的小離子強度 (相當於 ~0.1 ng 乙醇)約等於或低於偵測極限。在第二個吸菸者的呼出氣體情況下,使用傳統單次進樣只得到微弱離子訊號 (相當於 ~0.7 pg 甲苯) 的偵測邊緣。在這兩個實驗中,當加入阿達瑪轉換技術時,便能讓 S/N 比分別得到 8.0 及 7.9 倍的提升,雖然利用此技術偵測出的呼出氣體成分有待確認,但卻不需要任何前處理的步驟。另外在無塵室內環境空氣情況下,利用更高進樣次數的阿達瑪矩陣 255、1023、2047 分析 HMDSO,其提升的 S/N 比分別得到 7.4、15.1、20.1 倍,與理論值(8.0、16.0、22.6 倍) 皆相當地接近。在未經過前處理的 HMDSO 樣品,其單次進樣 (4 uL) 的濃度偵測極限在 20 ppbv。然而在使用了阿達瑪 2047 次的轉換後,其偵測濃度可達 1 ppbv (S/N = 3)。與此相比,當加入吸附/脫附系統時,其 HMDSO 濃度偵測極限可改善至 0.03 ppbv。實驗結果發現,此技術大幅改善了 S/N 比,並也提高了偵測靈敏度。
The Hadamard transform-gas chromatography/mass spectrometry (HT-GC/MS) technique was successfully employed for detecting of volatile organic compounds from the exhaled breath of humans and a clean room of a wafer factory. Compared to the single injection used in most GC/MS systems, the signal-to-noise (S/N) ratios were substantially improved after inverse Hadamard transformation of the encoded chromatogram. In the first case of breath from a drinker, using a conventional single injection, a small ion peak (corresponding to ~ 0.1 ng of ethanol), the intensity of which was approximately equal to or less than the limit of detection. Furthermore, in the second case of breath from a smoker, using conventional injection, a weak ion peak (corresponding to ~0.7 pg of toluene) was marginally detected. When the HT technique was applied, the signal-to-noise (S/N) ratio were improved to 8.0- and 7.9-fold, respectively. In both cases, the HT technique permitted specific components in exhaled breath to be determined, without the need for any extraction procedures. In the other case of airborne air from a clean room, when Hadamard matrices of 255, 1023 and 2047 were used, the S/N ratios of the signals for HMDSO were substantially improved to 7.4-, 15.1- and 20.1-fold, respectively. Those improvements are in good agreement with those obtained by theory (8.0-, 16.0- and 22.6-fold, respectively). Without any pretreatment, the limit of detection of HMDSO was 20 ppbv by means of a single injection (injection volume, 4 µL). However, this can be improved to 1 ppbv (S/N = 3) when a 2047 order of Hadamard matrix was applied. In contrast to this, when an absorption/desorption system was used, the limit of detection of HMDSO can be further improved to 0.03 ppbv. However, the HT technique led to an improvement in the S/N ratio, with the peak corresponding to the limit of detection.
[01] WHO (World Health Organisation), Euro Reports and Studies No.111 1989.
[02] Radian Corp., USEPA 1978, EPA-450/2-78-022.
[03] 行政院環境保護署,“揮發性有機物空氣污染管制及排放標準” 1997。
[04] 行政院環境保護署網站 http://www.epa.gov.tw/index.aspx
[05] Phillips, M.; Greenberg, J., Clin. Chem. 1992, 38 (1), 60-65.
[06] Frank Kneepkens, C. M.; Lepage, G.; Roy, C. C., Free Radical Biol. Med. 1994, 17 (2), 127-160.
[07] Fenske, J. D.; Paulson, S. E., J. Air Waste Manag. Assoc. 1999, 49 (5), 594-598.
[08] Phillips, M.; Herrera, J.; Krishnan, S.; Zain, M.; Greenberg, J.; Cataneo, R. N., J. Chromatogr. B Biomed. Sci. Appl. 1999, 729 (1-2), 75-88.
[09] Phillips, M., Anal. Biochem. 1997, 247 (2), 272-278.
[10] Fleischer, M.; Simon, E.; Rumpel, E.; Ulmer, H.; Harbeck, M.; Wandel, M.; Fietzek, C.; Weimar, U.; Meixner, H., Sensors Actuators B: Chem. 2002, 83 (1-3), 245-249.
[11] Lin, Y.-J.; Guo, H.-R.; Chang, Y.-H.; Kao, M.-T.; Wang, H.-H.; Hong, R.-I., Sensors Actuators B: Chem. 2001, 76 (1-3), 177-180.
[12] Di Natale, C.; Macagnano, A.; Martinelli, E.; Paolesse, R.; D'Arcangelo, G.; Roscioni, C.; Finazzi-Agrò, A.; D'Amico, A., Biosens. Bioelectron. 2003, 18 (10), 1209-1218.
[13] Romagnuolo, J.; Schiller, D.; Bailey, R. J., Am. J. Gastroenterol. 2002, 97 (5), 1113-1126.
[14] Deng, C.; Zhang, X.; Li, N., J. Chromatogr. B 2004, 808 (2), 269-277.
[15] Mendis, S.; Sobotka, P. A.; Leia, F. L.; Euler, D. E., Free Radical Biol. Med. 1995, 19 (5), 679-684.
[16] Basum, G. v.; Dahnke, H.; Halmer, D.; Hering, P.; Mürtz, M., J. Appl. Physiol. 2003, 95 (6), 2583-2590.
[17] Ochiai, N.; Takino, M.; Daishima, S.; Cardin, D. B., J. Chromatogr. B Biomed. Sci. Appl. 2001, 762 (1), 67-75.
[18] Di Francesco, F.; Fuoco, R.; Trivella, M. G.; Ceccarini, A., Microchem. J. 2005, 79 (1-2), 405-410.
[19] Nebelthau, A., Zentr. inn. Med. 1897, 977.
[20] Anstie, Practitioner 1874, 13 (15), 15-28.
[21] Schubert, J. K.; Spittler, K.-H.; Braun, G.; Geiger, K.; Guttmann, J., J. Appl. Physiol. 2001, 90 (2), 486-492.
[22] Grote, C.; Pawliszyn, J., Anal. Chem. 1997, 69 (4), 587-596.
[23] Risby, T. H.; Sehnert, S. S., Free Radical Biol. Med. 1999, 27 (11-12), 1182-1192.
[24] Cheng, W.-H.; Lee, W.-J., J. Lab. Clin. Med. 1999, 133 (3), 218-228.
[25] Johanson, G., Ann. Occup. Hyg. 1991, 35 (3), 323-339.
[26] Wilson, J. R.; Erwin, V. G.; McClearn, G. E.; Plomin, R.; Johnson, R. C.; Ahern, F. M.; Cole, R. E., Alcohol. Clin. Exp. Res. 1984 8(4), 366-374.
[27] Wilson, G.; Mitchell, R., Aust. J. Ophthalmol. 1983 11 (4), 315-319.
[28] 張維敦,呼氣酒測器如何測出我喝了多少酒呢 科學人雜誌 2004。
[29] Jones, A. W., Clin. Sci. 1982, 63, 441-445.
[30] Gullberg, R. G., Forensic. Sci. Rev. 2000, 12, 49-68.
[31] Jones, A. W., Proceedings of the 11th International Conference on Alcohol 1990, 237-244.
[32] Huang, M. F.; Lin, W. L.; Ma, Y. C., Indoor Air 2005, 15 (2), 135-140.
[33] Ou, B.; Huang, D., Anal. Chem. 2006, 78 (9), 3097-3103.
[34] Phillips, M.; Cataneo, R. N.; Greenberg, J.; Grodman, R.; Gunawardena, R.; Naidu, A., Eur. Respir. J. 2003, 21 (1), 48-51.
[35] Phillips, M.; Gleeson, K.; Hughes, J. M. B.; Greenberg, J.; Cataneo, R. N.; Baker, L.; McVay, W. P., The Lancet 1999, 353 (9168), 1930-1933.
[36] Phillips, M.; Cataneo, R. N.; Cummin, A. R. C.; Gagliardi, A. J.; Gleeson, K.; Greenberg, J.; Maxfield, R. A.; Rom, W. N., Chest 2003, 123 (6), 2115-2123.
[37] Euler, D.; Dave, S.; Guo, H., Clin. Chem. 1996, 42 (2), 303-308.
[38] Jo, W.-K.; Pack, K.-W., Environ. Res. 2000, 83 (2), 180-187.
[39] Plebani, C.; Tranfo, G.; Salerno, A.; Panebianco, A.; Marcelloni, A. M., Talanta 1999, 50 (2), 409-412.
[40] Poli, D.; Carbognani, P.; Corradi, M.; Goldoni, M.; Acampa, O.; Balbi, B.; Bianchi, L.; Rusca, M.; Mutti, A., Respiratory Research 2005, 6 (1), 71.
[41] Chen, X.; Xu, F.; Wang, Y.; Pan, Y.; Lu, D.; Wang, P.; Ying, K.; Chen, E.; Zhang, W., Cancer 2007, 110 (4), 835-844.
[42] 張國基、陳俊瑜,高科技產業製程本質較安全設計與應用之研究 工業安全科技季刊 63 期 2007。
[43] 石東生、黃文玉,國內半導體製造業潛在危害暴露之初步探討 勞工安全衛生簡訊第 24 期 1997。
[44] 行政院環保署,固定污染源 VOCs 管制策略規劃與減量措施推動計畫 2003。
[45] 經濟部工業局,國內半導體製造業及光電業之產業現況、製程廢氣污染來源與排放特性研析資料 2003。
[46] Dallas, A. J.; Graham, K.; Clarysse, M.; Fonderle, V. Proc. SPIE 2002, 4689, 1085-1109.
[47] Dallas, A. J.; Joriman, J.; Ding, L.; Weineck, G.; Seguin, K. Proc. SPIE 2007, 6518, 651846-1-11.
[48] Lobert, J. M.; Cate, P. W.; Ruede, D. J.; Wildgoose, J. R.; Miller, C. M.; Gaudreau, J. C. Proc. SPIE 2010, 7638, 763832-1-9.
[49] Lobert, J. M.; Miller, C. M.; Grayfer, A.; Tivin, A. M. Proc. SPIE 2009, 7272, 727222-1-12.
[50] Schweigkofler, M.; Niessner, R. Environ. Sci. Technol. 1999, 33, 3680-3685.
[51] Sommerlade, R.; Parlar, H.; Wrobel, D.; Kochss, P. Environ. Sci. Technoi. 1993, 27, 2435-2440.
[52] MacDonald, S. A.; Hinsberg, W. D.; Wendt, H. R.; Clecak, N. J.; Willson, C. G.; Snyder, C. D., Chem. Mater. 1993, 5 (3), 348-356.
[53] SEMI F21-95, “Classification of Airborne Molecular Contaminant Levels in Clean Environments.” Semiconductor Equipment and Materials International, Mountanin View, CA, 1995, 1996.
[54] SEMI F21-1102, “Classification of Airborne Molecular Contaminant Levels in Clean Environments.” Semiconductor Equipment and Materials International, Mountanin View, CA, 2002.
[55] 大西謙之,和田陽,黃寶川,半導體廠超級潔淨室的化學汙染和 “PURATEX” 化學空氣過濾器之介紹 電子月刊 1999,第 5 卷第九期,第 164-168 頁。
[56] Kitajima, H.; Shiramizu, Y., IEEE Trans. Semicond. Manufac. 1997, 10 (2), 267-272.
[57] Kinhead, D. Technology Transfer Report 95052812A-TR 1995.
[58] Matsumoto, Y.; Miyaji, A. U.S. Patent 1995, 5, 430, 303.
[59] Muller, A. J.; Psota-Kelty, L. A.; Krautter, H.W.; Sinclair, J.D. Solid State Technol. 1994, 37 (9), 61-72.
[60] Fosshaug, H.; Ekberg, M.; Kylberg, G. Proc. SPIE 2005, 5754, 1601-1628.
[61] Kunz, R. R.; Liberman, V.; Downs, D. K. Proc. SPIE 2000, 4000, 474-484.
[62] Courteille, C.; Magni, D.; Deschenaux, Ch.; Fayet, P.; Hollenstein, Ch. 41th Ann. Tech. Conf. Proc. Society of Vacuum Coaters 1998, 327-332.
[63] Protasova, L. V.; Grinberg, E. E.; Bessarabov, A. M.; Makarov, V. V.; Polyanskii, M. A. J. Phys. Chem. 1991, 65 (2), 283-285.
[64] Grümping, R.; Mikolajczak, D.; Hirner, A. V., Fresenius J. Anal. Chem. 1998, 361 (2), 133-139.
[65] Hexamethyldisilazane MSDS.
[66] Hexamethyldisiloxane MSDS.
[67] 洪珮珮,半導體製程健康潛在危害簡介 勞工安全衛生簡訊第十一期 民國八十四年六月
[68] 石東生,黃文玉,國內半導體製造業潛在危害暴露之初步探討 勞工安全衛生簡訊第二十四期 民國八十六年八月
[69] American conference of governmental industrial hygienists, Inc. Air sampling instruments for evaluation of atmospheric contaminants, 8th Edition, 1995.
[70] Kelly, T. J.; Holdren, M. W., Atmos. Environ. 1995, 29 (19), 2595-2608.
[71] Xiao, H.; Levine, S. P.; Nowak, J.; Puskar, M.; Spear, R. C., Am. Ind. Hyg. Assoc. J. 1993 54 (9), 545-556.
[72] Sylvester, J. J. Philosophical Magazine. 1867, 34, 461-475.
[73] Hadamard, J. Bulletin des Sciences Mathemaiques. 1893, 17, 240-248.
[74] Abramowitz, M.; Stegun, I. A. Handbook of Mathematical Functions. Washingtion, D.C.; U. S. Dept. of Commerce, 10-th printing, 1972.
[75] Harwit, M. D.; Sloane, N. J. Hadamard Transform Optics. Academic Press: London, 1979.
[76] Griffiths, P. R., Ed. Transform Techniques in Chemistry. Modern Analytical Chemistry Series; Plenum Press: New York, 1978.
[77] Gottlieb, P. IEEE Trans. Info. Theory. 1968, IT-14, 428-433.
[78] Literature Seminar, Changqing Pan, Applications of The Hadamard Transform in Analytical Chemistry. 2007, 3rd, p. 3.
[79] Yates, F. J. Roy. Stat. Soc. Supp. 1935, 2, 181-247.
[80] Cramér, H. Mathematical Methods of Statistics. Princeton: Princeton University Press, 1946
[81] Papoulis, A. Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill, 1965.
[82] Fellgett, P. J. de Physique et le Radium. 1958, 19, 187-191.
[83] Hotelling, H. Ann. Math. Stat. 1944, 15, 297-306.
[84] Zupan, J.; Bohanec, S.; Razinger, M.; Novic, M. Analytical Chimica Acta. 1988, 210, 63-72.
[85] Smit, H. C. Chromatographia 1970, 3, 515-518.
[86] Wiely, W. C.; McLaren, I. H. Review of Scientific Instruments. 1955, 26, 1150-1157.
[87] Brock, A.; Rodriguez, N.; Zare, R. N. Anal.Chem. 1998, 70, 3735-3741.
[88] Trapp, O.; Kimmel, J. R.; Yoon, O. K.; Zuleta, I. A.; Feranadez, F. M.; Zare, R. N. Angew. Chem. Int. Ed. 2004, 43, 6541-6544.
[89] Fernández, F. M.; Vadillo, J. M.; Kimmel, J. R.; Wetterhall, M.; Markides, K.; Rodriguez, N.; Zare, R. N. Anal.Chem. 2002, 74, 1611-1617.
[90] Treado, P. J.; Govil, A.; Morris, M. D.; Sternitzke, K. D.; McCreery, R. L. Soc. Appl. Spetrosc. 1990, 44, 1270-1275.
[91] DeVerse, R. A.; Hammaker, R. M.; Fateley, W. G. J. Mol. Struct. 2000, 521, 77-88.
[92] Chen, G.; Mei, E.; Gu, W.; Zeng, X.; Zeng, Y. Anal.Chim. Acta. 1995, 300, 261-267.
[93] Mei, E.; Chen, G.; Zeng, Y. Microchem. J. 1996, 53, 316-325.
[94] Tang, H.; Chen, G.; Zhou, J.; Wu, Q. Anal.Chim. Acta. 2002, 468, 27-34.
[95] Clowers, B. H.; Siems, W. F.; Hill, H. H.; Massick, S. M. Anal. Chem. 2006, 78, 44-51.
[96] Szumlas, A.W.; Ray, S. J.; Hieftje, G. M. Anal. Chem. 2006, 78, 4474-4481.
[97] Fletcher, D. W.; Haselgrove, J. C.; Bolinger, H. Magn. Reson. Imaging. 1999, 17, 1457-1468.
[98] Kupce, E.; Freeman, R. J. Mag. Reson. 2003, 163, 56-63.
[99] Kaneta, T.; Yamaguchi, Y.; Imasaka, T. Anal. Chem. 1999, 71, 5444-5446.
[100] Kaneta, T. Anal. Chem. 2001, 73, 540A-547A.
[101] Hata, K.; Kichise, Y.; Kaneta, T.; Imasaka, T. Anal.Chem. 2003, 75, 1765-1768.
[102] Hata, K.; Kaneta, T.; Imasaka, T. Anal. Chem. 2004, 76, 4421-4425.
[103] Braun, K. L.; Hapuarachchi, S.; Ferrnandez, F. M.; Aspinwall, C. A. Anal. Chem. 2006, 78, 1628-1635.
[104] Zhang, T; Fang, Q; Fang, Z.-L. Chem. J. Chinese Universities. 2003, 10, 1775-1778.
[105] Annino, R.; Gonnord, M.-F.; Guichon, G. Anal. Chem. 1979, 51, 379-382.
[106] Phillips, J. B. Anal. Chem. 1980, 52, 468A-478A.
[107] Kaljurand, M.; Kūllik, E. J. Chromatogr. 1979, 171, 243-247.
[108] Villalanti, D. C.; Burke, M. F.; Phillips, J. B. Anal. Chem. 1979, 51, 2222-2225.
[109] Kaljurand, T.; Smit, H. C. Chemometr. Intell. Lab. 2005, 79, 65-72.
[110] Kaljurand, M.; Kūllik, E. J. Chromatogr. 1979, 171, 243-247.
[111] 黃世光, 王丕承, 超飽和設計的研究,國立中央大學統計研究所,2000年 6月.
[112] Richardson, E. G. H. 264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia. Chichester: John Wiley & Sons Ltd., 2003.
[113] Skoog; Holler; Niema, ed “Principles of Instrumental Analysis” 6 th ed. p.p. 704.
[114] Karasek, F.W., Clemant, R.E. Elseire science publishing company Inc., 1988.
[115] Skoog; Holler; Niema, ed “Principles of Instrumental Analysis” 6 th ed. p.p. 713.
[116] Message, G.M. Quardrupole Storage Mass spectrometry, New York, Wiley, 1989.
[117] Skoog; Holler; Niema, ed “Principles of Instrumental Analysis” 6 th ed. p.p. 503.
[118] Message, G. M. Practical aspects of chromatography/mass spectrometry, chapter 5, 1984
[119] Watson, J.T. Introduction to mass spectrometry, p. 247.
[120] 劉信旺、吳倍任、羅俊光,空氣中揮發性有機化合物分析方法 化學第 62 卷第 3 期2004。
[121] 空氣中揮發性有機化合物檢測方法-不鏽鋼採樣筒/氣相層析質譜儀法 NIEA A715.13B。