研究生: |
吳孟樺 Wu, Meng-Hua |
---|---|
論文名稱: |
影響行動健康使用意圖之因素研究 A Study on Factors Influencing Use Intention of Mobile Health |
指導教授: |
施人英
Shih, Jen-Ying |
口試委員: |
何宗武
Ho, Tsung-Wu 江艾軒 Chiang, Ai-Hsuan 施人英 Shih, Jen-Ying |
口試日期: | 2023/01/17 |
學位類別: |
碩士 Master |
系所名稱: |
全球經營與策略研究所 Graduate Institute of Global Business and Strategy |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 行動健康 、使用意圖 、延伸性整合科技接受模式 |
英文關鍵詞: | Mobile Health, Use Intention, Extending Unified Theory of Acceptance and Use of Technology (UTAUT2) |
研究方法: | 調查研究 |
DOI URL: | http://doi.org/10.6345/NTNU202300355 |
論文種類: | 學術論文 |
相關次數: | 點閱:169 下載:23 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
長達三年多的疫情,使得國人對自身健康議題的重視程度日益增加,而能促進健康的方式不外乎是在日常落實自我健康管理,不管是一般民眾,抑或是有慢性病等需要時刻關切身體情況的人,比起需額外獲取的服務(如就醫或諮詢等),透過人手一機的智慧型手機或行動裝置就能輕易地取得協助記錄與管理健康的客製化服務。然而,行動健康的普及率並不及對健康議題的重視程度,因此,藉由瞭解人們對於使用行動健康的影響因素,以供政府與相關服務供應商日後發展與調整之方向。本研究以延伸性整合科技接受模式結合隱私變數作為研究理論基礎,藉此探討影響使用者使用行動健康之意圖的潛在因素。
本研究藉由線上社群以問卷法進行資料蒐集,有效問卷共275份,回收率約為87%。根據分析結果,影響使用行動健康意圖的因素為績效期望、社會影響、娛樂動機、價格知覺與習慣,努力期望、促進條件與隱私則對使用意圖無影響,而性別在促進條件與使用意圖間具調節作用,年齡則是在影響因素與使用意圖間無調節作用。研究結果能進一步讓相關組織瞭解並使行動健康朝著擴大採用之方向前進。
People have been valuing health issues increasingly since the coronavirus pandemic broke out. The way to promote health is no more than implementing self-health management in daily life. Compared to extra services such as consultation, it is much easier to get personalized health-related services through a mobile phone. Also, whether ordinary people or people who may have chronic diseases needing to care about their health conditions all the time can obtain the services based on their need without difficulties. However, the adoption of mobile health (mHealth) is inferior to the level of people paying attention to health issues. Then, knowing factors influencing the intention of using mHealth conduces to the direction of mHealth adjustment and development. Hence, in order to make sense of mHealth using intention, this study takes the combination of Extending Unified Theory of Acceptance and Use of Technology (UTAUT2) and Privacy variables as the theoretical basis of this research.
This research uses questionnaire survey through social media platforms to collect data. Totally 275 valid questionnaires were received with an effective rate of 87%. Next, the results show the factors of using mHealth intention are performance expectancy, social influence, hedonic motivation, price value, and habit. On the other side, effort expectancy, facilitating conditions and privacy do not have influence on mHealth usage. Besides, gender does moderate facilitating conditions, but age has no moderation effects. Therefore, based on the results, the related organizations can know about mHealth usage intentions, and make mHealth move toward to a greater adoption.
Affairs, U. D. o. V. (2018). RxRefill. In (Vol. App Store). App Store.
Agaku, I. T., Adisa, A. O., Ayo-Yusuf, O. A., & Connolly, G. N. (2014). Concern about security and privacy, and perceived control over collection and use of health information are related to withholding of health information from healthcare providers. Journal of the American Medical Informatics Association, 21(2), 374-378.
Ajzen, I. (2002). Residual effects of past on later behavior: Habituation and reasoned action perspectives. Personality and social psychology review, 6(2), 107-122.
Anne Snowdon, R. (2020). HIMSS Defines Digital Health for the Global Healthcare Industry. HIMSS. https://www.himss.org/news/himss-defines-digital-health-global-healthcare-industry
Apple. (2021). 健康. In. App Store.
AS, S. T. (2021). Rxremind medication reminder In (Vol. App Store). App Store.
Chen, X., Yu, H., & Yu, F. (2015). What is the optimal number of response alternatives for rating scales? From an information processing perspective. Journal of Marketing Analytics, 3(2), 69-78.
Conroy, D. E., Yang, C.-H., & Maher, J. P. (2014). Behavior change techniques in top-ranked mobile apps for physical activity. American journal of preventive medicine, 46(6), 649-652.
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. psychometrika, 16(3), 297-334.
DATAREPORTAL. (2022). DIGITAL 2022: TAIWAN. https://datareportal.com/reports/digital-2022-taiwan
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
Dijkstra, T. K., & Henseler, J. (2015). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational statistics & data analysis, 81, 10-23.
Direito, A., Carraça, E., Rawstorn, J., Whittaker, R., & Maddison, R. (2017). mHealth technologies to influence physical activity and sedentary behaviors: behavior change techniques, systematic review and meta-analysis of randomized controlled trials. Annals of behavioral medicine, 51(2), 226-239.
Evan Schoenberg, M. D. (2022). ATP3 Lipids Cholesterol Management. In (Vol. App Store). App Store.
Evolve Medical Systems, L. (2022). Glucobyte Diabetes App. In (Vol. App Store). App Store.
Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research. Philosophy and Rhetoric, 10(2).
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
Gandhi, N., & Patil, K. (2022). Understanding the Users’ Intention to Use the Three-Factor Authentication for Preserving the Privacy of Patient Data. Journal of Applied Security Research, 1-30.
Ganesan, A. N., Louise, J., Horsfall, M., Bilsborough, S. A., Hendriks, J., McGavigan, A. D., Selvanayagam, J. B., & Chew, D. P. (2016). International mobile-health intervention on physical activity, sitting, and weight: the Stepathlon cardiovascular health study. Journal of the American College of Cardiology, 67(21), 2453-2463.
GoodRx. (2022). GoodRx: Prescription Saver. In (Vol. App Store). App Store.
Hair, J. F. (2009). Multivariate data analysis.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152.
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the academy of marketing science, 43, 115-135.
Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55.
Inc., S. H. (2022). Sanvello: Anxiety & Depression. In (Vol. App Store). App Store.
Kaium, M. A., Bao, Y., Alam, M. Z., Hasan, N., & Hoque, M. R. (2019). Understanding the insight of factors affecting mHealth adoption: A systematic review. International Journal of Research in Business and Social Science (2147-4478), 8(6), 181-200.
Kayyali, R., Peletidi, A., Ismail, M., Hashim, Z., Bandeira, P., & Bonnah, J. (2017). Awareness and use of mHealth apps: a study from England. Pharmacy, 5(2), 33.
Kevorkova, O., & Popov, A. (2015). Personal health care and corresponding technology with prognostic capability for astronauts-issues and challenges. 2015 IEEE Aerospace Conference,
Krauss, J., Zheng, P., Stewart, C., & Berman, M. (2019). Digital health technology for behavior change. In Lifestyle Medicine (pp. 311-328). CRC Press Boca Raton, FL.
Leblanc, G., Gagnon, M.-P., & Sanderson, D. (2012). Determinants of primary care nurses’ intention to adopt an electronic health record in their clinical practice. CIN: Computers, Informatics, Nursing, 30(9), 496-502.
Leung, L., & Chen, C. (2019). E-health/m-health adoption and lifestyle improvements: Exploring the roles of technology readiness, the expectation-confirmation model, and health-related information activities. Telecommunications Policy, 43(6), 563-575.
Liu, C., Marchewka, J. T., Lu, J., & Yu, C.-S. (2005). Beyond concern—a privacy-trust-behavioral intention model of electronic commerce. Information & Management, 42(2), 289-304.
Malhotra, N. K., Kim, S. S., & Agarwal, J. (2004). Internet users' information privacy concerns (IUIPC): The construct, the scale, and a causal model. Information systems research, 15(4), 336-355.
Monroe, C. M. (2016). Valuable steps ahead: promoting physical activity with wearables and incentives. The lancet. Diabetes & endocrinology, 4(12), 960-961.
Morrissey, E. C., Corbett, T. K., Walsh, J. C., & Molloy, G. J. (2016). Behavior change techniques in apps for medication adherence: a content analysis. American journal of preventive medicine, 50(5), e143-e146.
Moss, R. J., Süle, A., & Kohl, S. (2019). eHealth and mHealth. European Journal of Hospital Pharmacy, 26(1), 57-58.
MyFitnessPal. (2021). MyFitnessPal: Calorie Counter. In.
MyNetDiary. (2022). Calorie Counter PRO MyNetDiary. In (Vol. App Store). App Store.
Organization, W. H. (2019). WHO guideline: recommendations on digital interventions for health system strengthening. World Health Organization.
Preston, C. C., & Colman, A. M. (2000). Optimal number of response categories in rating scales: reliability, validity, discriminating power, and respondent preferences. Acta psychologica, 104(1), 1-15.
Silva, B. M., Rodrigues, J. J., de la Torre Díez, I., López-Coronado, M., & Saleem, K. (2015). Mobile-health: A review of current state in 2015. Journal of biomedical informatics, 56, 265-272.
Spatharou, A., Hieronimus, S., & Jenkins, J. (2020). Transforming healthcare with AI: The impact on the workforce and organizations. https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/transforming-healthcare-with-ai
Stewart, C. (2022). Share of health app users in selected countries as of 2022. https://www.statista.com/forecasts/1181436/share-of-health-app-users-by-country
Taconic System, L. (2022). Blood Pressure Monitor. In (Vol. App Store). App Store.
Taylor, R. (1990). Interpretation of the correlation coefficient: a basic review. Journal of diagnostic medical sonography, 6(1), 35-39.
ThrivePort, L. (2015). Moodnotes - Mood Tracker. In (Vol. App Store). App Store.
Ullman, J. B. (2001). Structural equation modeling. In: B. G. Tabachnick, & L. S. Fidell (Eds.), Using multivariate statistics. Boston, MA: Pearson Education.
Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information systems research, 11(4), 342-365.
Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision sciences, 39(2), 273-315.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204.
Venkatesh, V., Morris, M. G., & Ackerman, P. L. (2000). A longitudinal field investigation of gender differences in individual technology adoption decision-making processes. Organizational behavior and human decision processes, 83(1), 33-60.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 157-178.
Weijters, B., Cabooter, E., & Schillewaert, N. (2010). The effect of rating scale format on response styles: The number of response categories and response category labels. International Journal of Research in Marketing, 27(3), 236-247.
WongLaura, E., HawkinsJessica, E., & MurrellKaren, L. (2020). Where are all the patients? Addressing Covid-19 fear to encourage sick patients to seek emergency care. NEJM Catalyst Innovations in Care Delivery.
Ying, L., Dinglong, H., Haiyi, Z., & Rau, P. (2007). Users’ perception of mobile information security. Hacker Journals White Papers.
Zhou, J., Rau, P.-L. P., & Salvendy, G. (2014). Age-related difference in the use of mobile phones. Universal Access in the Information Society, 13(4), 401-413.
千禧之愛健康基金會. (2018). 代謝症候群認知度創歷年新高 但國人健康APP下載率僅3成. https://www.1000-love.org.tw/contents/release_ct?id=49
朱冠郁, 康嵐英, 郭淑柳, 李垣樟, 魏柏立, 陳瑞杰, & 蕭淑代. (2020). 資訊科技輔助新冠肺炎防疫經驗-以某一區域教學醫院為例 [Information and Communication Technology Use on COVID-19 Patients-A Regional Teaching Hospital Experience]. 新臺北護理期刊, 22(2), 1-7. https://doi.org/10.6540/ntjn.202009_22(2).0001
行政院主計總處. (2021). 國情統計通報第231號. Retrieved from https://www.stat.gov.tw/public/Data/112616244W75YTOW0.pdf
林祈禎. (2021). 疫情加速智慧醫療,數位轉型如何成為抗疫主力?. 數位時代BusinessNext. Retrieved 07.08 from https://www.bnext.com.tw/article/72305/apple-reports-fourth-quarter-results
花蓮縣政府. (2022). 花蓮縣確診通報151人 配合衛福部政策中央地方同心防疫 敬請4/21曾至冠羽羽球館活動之鄉親至慈濟社區快篩. 花蓮縣政府. https://www.hl.gov.tw/Detail/653f46df71c641cdb2528276ba20b6cc
國家發展委員會. (2019). 108年持有手機民眾數位機會調查報告.
許桂芬. (2022). ICT大廠推動醫療照護產業變革. 財團法人資訊工業策進會. https://www.iii.org.tw/focus/FocusDtl.aspx?f_type=1&f_sqno=k7hNTLd3QMFnZN0yt4XRUQ__&fm_sqno=12
劉韋廷. (2022). SDIA攜手新竹台大醫院秀智慧醫療應用 拚輸出國際. 鉅亨網. https://news.cnyes.com/news/id/4988493
衛生福利部. (2022). 醫療機構現況及醫院醫療服務量統計 Annual Report of Medical Care Institution & Hospital Utilization, 2021. 衛生福利部
衛生福利部疾病管制署. (2021). 衛福部桃園醫院事件. 疾病管制署. https://covid19.mohw.gov.tw/ch/cp-5122-58855-205.html