簡易檢索 / 詳目顯示

研究生: 王家惠
Wang, Jia-Hui
論文名稱: 碳質材料的表面改質與鑑定及其應用於水解生物質衍生之葡聚醣的研究
Surface Modification and Characterization of Carbonaceous Materials and its Application on Catalytic Hydrolysis of Biomass-derived Polysaccharides
指導教授: 鍾博文
Chung, Po-Wen
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 95
中文關鍵詞: 碳質材料表面改質纖維素水解二氧化碳吸附
英文關鍵詞: carbonaceous materials, surface modification, cellulose, hydrolysis, carbon dioxide adsorption
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.066.2018.B05
論文種類: 學術論文
相關次數: 點閱:117下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用石油精煉所產出之廢棄碳質材料,介相瀝青(Mesophase pitch),經由各種化學表面修飾可以將酸性官能基團集中在其層狀結構邊緣上,已達到高的酸表面覆蓋率,且空間上鄰近的官能基可以仿纖維素水解酶上鄰近的羧酸基一般,有效水解纖維素的醣苷鍵斷鍵進而提高葡萄糖產率。以下本研究將使用四種不同的化學改質方式:(1)硫酸修飾(MP-SO3H)、(2)硫酸修飾再經水熱處理(MP-SO3H-HT)、 (3)硝酸修飾(MP-COOH)、(4)次氯酸鈉修飾(MP-Oxy)來合成酸性官能基化的碳質觸媒,並藉由表面分析來鑑定改質後之材料結構穩定度、酸性官能基團的組成等。由酸鹼反式滴定及元素分析計算表面的總酸量及不同酸性官能基團的組成,再藉由粉末X射線衍射計算材料的層間距離以及利用氮氣吸脫附測量材料的比表面積。另外,13C DP-MAS固態核磁共振光譜的分析中觀察到大部分的酸性官能基團位於sp2的碳上,因此可推論主要是在石墨納米結構邊緣上被改質。進一步將此一系列改質後的碳材用來做為水解纖維素的觸媒使用,在與纖維素(分子量約莫7,370 Da)的水解實驗中僅使用酸與纖維素的比例約4.8 mol%的催化劑(MP-SO3H)即可達到約44 mole %的高葡萄糖產率,再者由此催化劑上之酸性官能基團在水溶液中浸出(leaching)所造成的葡萄糖產率低於3 mole %,證實本研究設計之催化劑具有良好的穩定度以致於整個催化反應兼具環保與效率。
    除此之外,本研究意外發現在二氧化碳吸附的分析結果中,MP-SO3H-HT具有特別顯著的二氧化碳吸附量約為28 wt% (273K),由於本碳質材料為一層狀結構,有別於先前文獻所提到需具有孔洞及特定官能基之材料始具有的吸附能力,因此推論此一催化劑未來將有助於應用在二氧化碳吸附及封存。

    Herein, this study has discovered mesophase pitch (MP) carbonaceous material derived from petroleum waste, can be modified with high surface coverage of acid functional groups on the edges of layered structure, which could be further used as hydrolytic catalysts for hydrolyzing cellulose. This close proximity of acid moiety on aforementioned carbon materials resembles the center of hydrolysis enzymes, which composes of two close carboxylate groups, such as glycosidase. Chemical modification on carbon materials was listed as following: (1) sulfonic acid modification (MP-SO3H), (2) hydrothermal treatments of MP-SO3H (MP-SO3H-HT), (3) nitric acid modification (MP-COOH), and (4) sodium hypochlorite modification (MP-Oxy) and surface properties were characterized both qualitatively and quantitatively. Quantification of acid functionality was determined by the acid-base back-titration and the distance between layered structure was calculated from the powder X-ray diffraction pattern, and surface area can be characterized from nitrogen sorption study. Furthermore, acid groups were observed to be mainly modified on the edge of the graphitic nanostructure for MP structure owing to the diminishing of aliphatic carbon in spectra of 13C DP/MAS solid-state NMR analysis. In addition, hydrolytic performance was carried out by using MP-SO3H with a catalytic ratio of 4.8 mol% (acid groups/cellulose) for hydrolyzing cellulosic polymer of peak molecular weight (7,374 Da) and the results have shown the glucose yield can reach up to 44 mol%. On the other hand, only lower than 3 mol% of glucose yield could be observed during the hydrolytic reaction of leaching sulfonic groups and it further suggested that MP-based catalysts with acidic functionalities exhibited hydrolytically stable, which could lead the entire catalytic processes more effectively and eco-friendly.
    In addition, we serendipitously discovered that MP-SO3H-HT exhibited high carbon dioxide uptake upto 28 wt% and it might be attributed to layered structure of carbonaceous material, which was different from the adsorption energetics of porous materials reported previously. Hence, it suggested that this aforementioned carbon material can be potentially employed for the capture and storage of carbon dioxide in the future.

    List of Figures Ⅶ List of Tables Ⅹ Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Introduction of Biomass 4 1.2.1 Cellulose 6 1.2.2 Hemicellulose 6 1.2.3 Lignin 7 1.3 Enzymes as a Catalyst for Hydrolysis of Cellulose 7 1.4 Hydrolysis of Lignocellulose Biomass into Oligosaccharides and Monosaccharides 12 1.4.1 Kinetics and Mechanism of Acid-Catalyzed Hydrolysis 13 1.4.2 Pretreatments of Crystalline Cellulose 13 1.4.3 Homogenous Catalysts for Hydrolysis of Cellulose 14 1.4.4 Heterogeneous Catalysts for Hydrolysis of Cellulose 14 1.5 Research Purpose 19 Chapter 2 Experimental 20 2.1 Chemicals and Reagents 20 2.2 Introduction of Instruments and Methods 21 2.2.1 Fourier-Transform Infrared Spectroscopy (FTIR) 21 2.2.2 Powder X-ray Diffraction (PXRD) 22 2.2.3 Thermogravimetric Analyzer (TGA) 23 2.2.4 Nitrogen Gas, Carbon Dioxide Gas and Water Vapor Sorption Analysis 24 2.2.5 Size-Exclusion Chromatography/Gel Permeation Chromatography (SEC/GPC) 26 2.2.6 13C Solid-state NMR (SSNMR) 28 2.2.7 High Performance Liquid Chromatography (HPLC) 29 2.2.8 Elemental Analysis (EA) 30 2.2.9 X-ray Photoelectron Spectroscopy (XPS) 31 2.2.10 Zeta Potential Measurements 32 2.2.11 Raman Spectrometer 33 2.2.12 Identification of Acid Sites Density (Boehm Titration) 34 2.3 Material Preparation and Treatment 36 2.3.1 Pretreatment of Raw Meso-phase Pitch 36 2.3.2 Functionalized Mesophase Pitch 36 2.4 Pretreatment of Cellulose 39 2.5 Hydrolysis of Cellulose 40 2.6 Leaching Test of Cellulose 41 2.7 Activation Energy Estimation of Cellobiose Hydrolysis 41 Chapter 3 Result and Discussion 44 3.1 Materials Characteristic 44 3.1.1 Result of the Condition Test for MP-COOH 44 3.1.2 Result of the Condition Test for MP-Oxy 56 3.1.3 Nitrogen Gas, Carbon Dioxide Gas and Water Vapor Sorption Isotherms 59 3.1.4 Identification of Acid Sites Density (Boehm Titration) 61 3.1.5 Powder X-ray Diffraction (PXRD) 63 3.1.6 Fourier-Transform Infrared Spectroscopy (FTIR) 64 3.1.7 Thermogravimetric Analysis (TGA) 65 3.1.8 13C Solid-state NMR (SSNMR) 66 3.1.9 Zeta Potential Measurements 68 3.1.10 X-ray Photoelectron Spectroscopy (XPS) 69 3.1.11 Raman Spectroscopy 70 3.2 Reactant characterization 71 3.2.1 X-ray Diffraction (XRD) 71 3.2.2 Fourier-Transform Infrared Spectroscopy (FTIR) 72 3.2.3 Thermogravimetric Analysis (TGA) 73 3.2.4 Size-Exclusion Chromatography/Gel Permeation Chromatography (SEC/GPC) 74 3.3 Result of Hydrolysis Reaction 76 3.3.1 Total Production of Cellulose Hydrolysis 76 3.3.2 Effect of Reaction Time on Amorphous Cellulose Hydrolysis 77 3.4 Result of Leaching Test 79 3.4.1 Leaching Test of MP-Oxy 80 3.5 Activation Energy Estimation of Cellobiose Hydrolysis 81 3.6 Comparison of Cellulose Hydrolysis Efficiency With Other Catalysts 82 Chapter 4 Conclusions 84 Chapter 5 References 86

    英文文獻:

    1. Chu, S.; Majumdar, A., Opportunities and challenges for a sustainable energy future. nature 2012, 488 (7411), 294.
    2. Newman, P., Decoupling economic growth from fossil fuels. Modern Economy 2017, 8 (06), 791.
    3. Perlack, R. D., Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory: 2005.
    4. Gupta, V. K.; Kubicek, C. P.; Berrin, J.-G.; Wilson, D. W.; Couturier, M.; Berlin, A.; Edivaldo Filho, X.; Ezeji, T., Fungal enzymes for bio-products from sustainable and waste biomass. Trends in biochemical sciences 2016, 41 (7), 633-645.
    5. Wu, Y.; Fu, Z.; Yin, D.; Xu, Q.; Liu, F.; Lu, C.; Mao, L., Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids. Green Chemistry 2010, 12 (4), 696-700.
    6. Kobayashi, H.; Komanoya, T.; Hara, K.; Fukuoka, A., Water‐tolerant mesoporous‐carbon‐supported ruthenium catalysts for the hydrolysis of cellulose to glucose. ChemSusChem: Chemistry & Sustainability Energy & Materials 2010, 3 (4), 440-443.
    7. Van de Vyver, S.; Peng, L.; Geboers, J.; Schepers, H.; de Clippel, F.; Gommes, C. J.; Goderis, B.; Jacobs, P. A.; Sels, B. F., Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chemistry 2010, 12 (9), 1560-1563.
    8. Suganuma, S.; Nakajima, K.; Kitano, M.; Yamaguchi, D.; Kato, H.; Hayashi, S.; Hara, M., Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. Journal of the American Chemical Society 2008, 130 (38), 12787-12793.
    9. Onda, A.; Ochi, T.; Yanagisawa, K., Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chemistry 2008, 10 (10), 1033-1037.
    10. Wyman, C. E.; Dale, B. E.; Elander, R. T.; Holtzapple, M.; Ladisch, M. R.; Lee, Y., Coordinated development of leading biomass pretreatment technologies. Bioresource technology 2005, 96 (18), 1959-1966.
    11. Deng, J.; Xiong, T.; Wang, H.; Zheng, A.; Wang, Y., Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons. ACS Sustainable Chemistry & Engineering 2016, 4 (7), 3750-3756.
    12. Dutta, S.; Wu, K. C.-W., Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production. Green Chemistry 2014, 16 (11), 4615-4626.
    13. Vassilev, S. V.; Baxter, D.; Andersen, L. K.; Vassileva, C. G., An overview of the chemical composition of biomass. Fuel 2010, 89 (5), 913-933.
    14. Zhu, C.; Krumm, C.; Facas, G. G.; Neurock, M.; Dauenhauer, P. J., Energetics of cellulose and cyclodextrin glycosidic bond cleavage. Reaction Chemistry & Engineering 2017, 2 (2), 201-214.
    15. Isikgor, F. H.; Becer, C. R., Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry 2015, 6 (25), 4497-4559.
    16. Collard, F.-X.; Blin, J., A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews 2014, 38, 594-608.
    17. Um, B.-H.; van Walsum, G. P., Acid hydrolysis of hemicellulose in green liquor pre-pulping extract of mixed northern hardwoods. Applied biochemistry and biotechnology 2009, 153 (1-3), 127.
    18. Mäki-Arvela, P. i.; Salmi, T.; Holmbom, B.; Willför, S.; Murzin, D. Y., Synthesis of sugars by hydrolysis of hemicelluloses-a review. Chemical reviews 2011, 111 (9), 5638-5666.
    19. Chakar, F. S.; Ragauskas, A. J., Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products 2004, 20 (2), 131-141.
    20. Boisset, C.; Fraschini, C.; Schülein, M.; Henrissat, B.; Chanzy, H., Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A. Applied and environmental microbiology 2000, 66 (4), 1444-1452.
    21. Jeoh, T.; Wilson, D. B.; Walker, L. P., Cooperative and competitive binding in synergistic mixtures of thermobifida fuscaCellulases Cel5A, Cel6B, and Cel9A. Biotechnology progress 2002, 18 (4), 760-769.
    22. Mishra, C.; Rao, M., Mode of action and synergism of cellulases fromPenicillium funiculosum. Applied biochemistry and biotechnology 1988, 19 (2), 139-150.
    23. White, A. R.; Brown, R. M., Enzymatic hydrolysis of cellulose: visual characterization of the process. Proceedings of the National Academy of Sciences 1981, 78 (2), 1047-1051.
    24. Merino, S. T.; Cherry, J., Progress and challenges in enzyme development for biomass utilization. In Biofuels, Springer: 2007; pp 95-120.
    25. Wood, T. In Properties and mode of action of cellulases, Biotechnology and bioengineering symposium, 1975; p 111.
    26. Gao, D.; Chundawat, S. P.; Sethi, A.; Balan, V.; Gnanakaran, S.; Dale, B. E., Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis. Proceedings of the National Academy of Sciences 2013, 110 (27), 10922-10927.
    27. Beckham, G. T.; Ståhlberg, J.; Knott, B. C.; Himmel, M. E.; Crowley, M. F.; Sandgren, M.; Sørlie, M.; Payne, C. M., Towards a molecular-level theory of carbohydrate processivity in glycoside hydrolases. Current opinion in biotechnology 2014, 27, 96-106.
    28. Hasunuma, T.; Okazaki, F.; Okai, N.; Hara, K. Y.; Ishii, J.; Kondo, A., A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresource technology 2013, 135, 513-522.
    29. Sajith, S.; Priji, P.; Sreedevi, S.; Benjamin, S., An overview on fungal cellulases with an industrial perspective. J Nutr Food Sci 2016, 6 (1), 461.
    30. Jongkees, S. A.; Withers, S. G., Unusual enzymatic glycoside cleavage mechanisms. Accounts of chemical research 2013, 47 (1), 226-235.
    31. Zechel, D. L.; Withers, S. G., Glycosidase mechanisms: anatomy of a finely tuned catalyst. Accounts of chemical research 2000, 33 (1), 11-18.
    32. White, A.; Rose, D. R., Mechanism of catalysis by retaining β-glycosyl hydrolases. Current opinion in structural biology 1997, 7 (5), 645-651.
    33. McCarter, J. D.; Withers, G. S., Mechanisms of enzymatic glycoside hydrolysis. Current opinion in structural biology 1994, 4 (6), 885-892.
    34. Binder, J. B.; Raines, R. T., Fermentable sugars by chemical hydrolysis of biomass. Proceedings of the National Academy of Sciences 2010, 107 (10), 4516-4521.
    35. Shuai, L.; Amiri, M. T.; Questell-Santiago, Y. M.; Héroguel, F.; Li, Y.; Kim, H.; Meilan, R.; Chapple, C.; Ralph, J.; Luterbacher, J. S., Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 2016, 354 (6310), 329-333.
    36. Kruger, J. S.; Cleveland, N. S.; Zhang, S.; Katahira, R.; Black, B. A.; Chupka, G. M.; Lammens, T.; Hamilton, P. G.; Biddy, M. J.; Beckham, G. T., Lignin depolymerization with nitrate-intercalated hydrotalcite catalysts. ACS Catalysis 2016, 6 (2), 1316-1328.
    37. Gírio, F. M.; Fonseca, C.; Carvalheiro, F.; Duarte, L. C.; Marques, S.; Bogel-Łukasik, R., Hemicelluloses for fuel ethanol: a review. Bioresource technology 2010, 101 (13), 4775-4800.
    38. Zhang, Y. H. P.; Lynd, L. R., Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and bioengineering 2004, 88 (7), 797-824.
    39. Engel, P.; Mladenov, R.; Wulfhorst, H.; Jäger, G.; Spiess, A. C., Point by point analysis: how ionic liquid affects the enzymatic hydrolysis of native and modified cellulose. Green chemistry 2010, 12 (11), 1959-1966.
    40. Salvador, Â. C.; Santos, M. d. C.; Saraiva, J. A., Effect of the ionic liquid [bmim] Cl and high pressure on the activity of cellulase. Green Chemistry 2010, 12 (4), 632-635.
    41. Huang, Y.-B.; Fu, Y., Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chemistry 2013, 15 (5), 1095-1111.
    42. Saeman, J. F., Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Industrial & Engineering Chemistry 1945, 37 (1), 43-52.
    43. Torget, R. W.; Kim, J. S.; Lee, Y., Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Industrial & engineering chemistry research 2000, 39 (8), 2817-2825.
    44. Antonoplis, R.; Blanch, H.; Freitas, R.; Sciamanna, A.; Wilke, C., Production of sugars from wood using high‐pressure hydrogen chloride. Biotechnology and bioengineering 1983, 25 (11), 2757-2773.
    45. Linnett, P. E.; Sanders, J. P., Process for the preparation of oligosaccharides-containing products from biomass. Google Patents: 1987.
    46. Rinaldi, R.; Schüth, F., Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem: Chemistry & Sustainability Energy & Materials 2009, 2 (12), 1096-1107.
    47. Hu, L.; Lin, L.; Wu, Z.; Zhou, S.; Liu, S., Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. Applied Catalysis B: Environmental 2015, 174, 225-243.
    48. Guo, F.; Fang, Z.; Xu, C. C.; Smith Jr, R. L., Solid acid mediated hydrolysis of biomass for producing biofuels. Progress in Energy and Combustion Science 2012, 38 (5), 672-690.
    49. Vigier, K. D. O.; Jérôme, F., Heterogeneously-catalyzed conversion of carbohydrates. In Carbohydrates in sustainable development II, Springer: 2010; pp 63-92.
    50. Shimizu, K.-i.; Satsuma, A., Toward a rational control of solid acid catalysis for green synthesis and biomass conversion. Energy & Environmental Science 2011, 4 (9), 3140-3153.
    51. Dhepe, P. L.; Fukuoka, A., Cellulose conversion under heterogeneous catalysis. ChemSusChem: Chemistry & Sustainability Energy & Materials 2008, 1 (12), 969-975.
    52. Nandiwale, K. Y.; Galande, N. D.; Thakur, P.; Sawant, S. D.; Zambre, V. P.; Bokade, V. V., One-pot synthesis of 5-hydroxymethylfurfural by cellulose hydrolysis over highly active bimodal micro/mesoporous H-ZSM-5 catalyst. ACS Sustainable Chemistry & Engineering 2014, 2 (7), 1928-1932.
    53. Zhou, J.; Xia, Z.; Huang, T.; Yan, P.; Xu, W.; Xu, Z.; Wang, J.; Zhang, Z. C., An ionic liquid–organics–water ternary biphasic system enhances the 5-hydroxymethylfurfural yield in catalytic conversion of glucose at high concentrations. Green Chemistry 2015, 17 (8), 4206-4216.
    54. Huang, H.; Denard, C. A.; Alamillo, R.; Crisci, A. J.; Miao, Y.; Dumesic, J. A.; Scott, S. L.; Zhao, H., Tandem catalytic conversion of glucose to 5-hydroxymethylfurfural with an immobilized enzyme and a solid acid. ACS Catalysis 2014, 4 (7), 2165-2168.
    55. Liang, G.; He, L.; Cheng, H.; Zhang, C.; Li, X.; Fujita, S.-i.; Zhang, B.; Arai, M.; Zhao, F., ZSM-5-supported multiply-twinned nickel particles: Formation, surface properties, and high catalytic performance in hydrolytic hydrogenation of cellulose. Journal of Catalysis 2015, 325, 79-86.
    56. Wang, Y.; Deng, W.; Wang, B.; Zhang, Q.; Wan, X.; Tang, Z.; Wang, Y.; Zhu, C.; Cao, Z.; Wang, G., Chemical synthesis of lactic acid from cellulose catalysed by lead (II) ions in water. Nature communications 2013, 4, 2141.
    57. Albert, J.; Wölfel, R.; Bösmann, A.; Wasserscheid, P., Selective oxidation of complex, water-insoluble biomass to formic acid using additives as reaction accelerators. Energy & Environmental Science 2012, 5 (7), 7956-7962.
    58. Jin, F.; Zhou, Z.; Moriya, T.; Kishida, H.; Higashijima, H.; Enomoto, H., Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass. Environmental science & technology 2005, 39 (6), 1893-1902.
    59. An, D.; Ye, A.; Deng, W.; Zhang, Q.; Wang, Y., Selective Conversion of Cellobiose and Cellulose into Gluconic Acid in Water in the Presence of Oxygen, Catalyzed by Polyoxometalate‐Supported Gold Nanoparticles. Chemistry–A European Journal 2012, 18 (10), 2938-2947.
    60. Jiang, Z.; Zhang, Z.; Song, J.; Meng, Q.; Zhou, H.; He, Z.; Han, B., Metal-oxide-catalyzed efficient conversion of cellulose to oxalic acid in alkaline solution under low oxygen pressure. ACS Sustainable Chemistry & Engineering 2015, 4 (1), 305-311.
    61. Sidiras, D.; Koukios, E., Acid saccharification of ball-milled straw. Biomass 1989, 19 (4), 289-306.
    62. Tassinari, T.; Macy, C.; Spano, L.; Ryu, D. D., Energy requirements and process design considerations in compression‐milling pretreatment of cellulosic wastes for enzymatic hydrolysis. Biotechnology and Bioengineering 1980, 22 (8), 1689-1705.
    63. Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D., Dissolution of cellose with ionic liquids. Journal of the American chemical society 2002, 124 (18), 4974-4975.
    64. Zhang, J.; Zhang, B.; Zhang, J.; Lin, L.; Liu, S.; Ouyang, P., Effect of phosphoric acid pretreatment on enzymatic hydrolysis of microcrystalline cellulose. Biotechnology advances 2010, 28 (5), 613-619.
    65. Kim, T. H.; Lee, Y. Y., Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresource technology 2005, 96 (18), 2007-2013.
    66. Faith, W., Oxidation of Chlorinated. Hydrocarbons to Maleic and Fumaric Acids. Industrial & Engineering Chemistry 1945, 37 (5), 438-441.
    67. Ragg, P.; Fields, P., The development of a process for the hydrolysis of lignocellulosic waste. Phil. Trans. R. Soc. Lond. A 1987, 321 (1561), 537-547.
    68. Saeman, J. F.; Bubl, J. L.; Harris, E. E., Quantitative saccharification of wood and cellulose. Industrial & Engineering Chemistry Analytical Edition 1945, 17 (1), 35-37.
    69. Camacho, F.; González‐Tello, P.; Jurado, E.; Robles, A., Microcrystalline‐cellulose hydrolysis with concentrated sulphuric acid. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology 1996, 67 (4), 350-356.
    70. Li, C.; Zhao, Z. K., Efficient acid‐catalyzed hydrolysis of cellulose in ionic liquid. Advanced Synthesis & Catalysis 2007, 349 (11‐12), 1847-1850.
    71. de Oliveira, H. F. N.; Farès, C.; Rinaldi, R., Beyond a solvent: the roles of 1-butyl-3-methylimidazolium chloride in the acid-catalysis for cellulose depolymerisation. Chemical science 2015, 6 (9), 5215-5224.
    72. Morales-delaRosa, S.; Campos-Martin, J. M.; Fierro, J. L., High glucose yields from the hydrolysis of cellulose dissolved in ionic liquids. Chemical Engineering Journal 2012, 181, 538-541.
    73. Morales‐delaRosa, S.; Campos‐Martin, J. M.; Fierro, J. L., Complete chemical hydrolysis of cellulose into fermentable sugars through ionic liquids and antisolvent pretreatments. ChemSusChem 2014, 7 (12), 3467-3475.
    74. Rinaldi, R.; Palkovits, R.; Schüth, F., Depolymerization of cellulose using solid catalysts in ionic liquids. Angewandte Chemie 2008, 120 (42), 8167-8170.
    75. Rinaldi, R.; Meine, N.; vom Stein, J.; Palkovits, R.; Schüth, F., Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose? ChemSusChem: Chemistry & Sustainability Energy & Materials 2010, 3 (2), 266-276.
    76. Fan, G.; Liao, C.; Fang, T.; Wang, M.; Song, G., Hydrolysis of cellulose catalyzed by sulfonated poly (styrene-co-divinylbenzene) in the ionic liquid 1-n-butyl-3-methylimidazolium bromide. Fuel processing technology 2013, 116, 142-148.
    77. Komanoya, T.; Kobayashi, H.; Hara, K.; Chun, W.-J.; Fukuoka, A., Catalysis and characterization of carbon-supported ruthenium for cellulose hydrolysis. Applied Catalysis A: General 2011, 407 (1-2), 188-194.
    78. Kobayashi, H.; Yabushita, M.; Komanoya, T.; Hara, K.; Fujita, I.; Fukuoka, A., High-yielding one-pot synthesis of glucose from cellulose using simple activated carbons and trace hydrochloric acid. Acs Catalysis 2013, 3 (4), 581-587.
    79. Chung, P.-W.; Yabushita, M.; To, A. T.; Bae, Y.; Jankolovits, J.; Kobayashi, H.; Fukuoka, A.; Katz, A., Long-chain glucan adsorption and depolymerization in zeolite-templated carbon catalysts. ACS Catalysis 2015, 5 (11), 6422-6425.
    80. Charmot, A.; Chung, P.-W.; Katz, A., Catalytic hydrolysis of cellulose to glucose using weak-acid surface sites on postsynthetically modified carbon. ACS Sustainable Chemistry & Engineering 2014, 2 (12), 2866-2872.
    81. Chung, P.-W.; Charmot, A.; Gazit, O. M.; Katz, A., Glucan adsorption on mesoporous carbon nanoparticles: effect of chain length and internal surface. Langmuir 2012, 28 (43), 15222-15232.
    82. Yamaguchi, D.; Kitano, M.; Suganuma, S.; Nakajima, K.; Kato, H.; Hara, M., Hydrolysis of cellulose by a solid acid catalyst under optimal reaction conditions. The Journal of Physical Chemistry C 2009, 113 (8), 3181-3188.
    83. Liu, M.; Jia, S.; Gong, Y.; Song, C.; Guo, X., Effective hydrolysis of cellulose into glucose over sulfonated sugar-derived carbon in an ionic liquid. Industrial & Engineering Chemistry Research 2013, 52 (24), 8167-8173.
    84. Guo, H.; Lian, Y.; Yan, L.; Qi, X.; Smith, R. L., Cellulose-derived superparamagnetic carbonaceous solid acid catalyst for cellulose hydrolysis in an ionic liquid or aqueous reaction system. Green Chemistry 2013, 15 (8), 2167-2174.
    85. Xiong, Y.; Zhang, Z.; Wang, X.; Liu, B.; Lin, J., Hydrolysis of cellulose in ionic liquids catalyzed by a magnetically-recoverable solid acid catalyst. Chemical Engineering Journal 2014, 235, 349-355.
    86. Liu, X.; Xu, Q.; Liu, J.; Yin, D.; Su, S.; Ding, H., Hydrolysis of cellulose into reducing sugars in ionic liquids. Fuel 2016, 164, 46-50.
    87. Hu, L.; Li, Z.; Wu, Z.; Lin, L.; Zhou, S., Catalytic hydrolysis of microcrystalline and rice straw-derived cellulose over a chlorine-doped magnetic carbonaceous solid acid. Industrial crops and products 2016, 84, 408-417.
    88. Ferrari, A. C.; Basko, D. M., Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature nanotechnology 2013, 8 (4), 235.
    89. Boehm, H.-P., Surface chemical characterization of carbons from adsorption studies. In Adsorption by carbons, Elsevier: 2008; pp 301-327.
    90. Mo, X.; López, D. E.; Suwannakarn, K.; Liu, Y.; Lotero, E.; Goodwin Jr, J. G.; Lu, C., Activation and deactivation characteristics of sulfonated carbon catalysts. Journal of Catalysis 2008, 254 (2), 332-338.
    91. Hu, S.; Smith, T. J.; Lou, W.; Zong, M., Efficient hydrolysis of cellulose over a novel sucralose-derived solid acid with cellulose-binding and catalytic sites. Journal of agricultural and food chemistry 2014, 62 (8), 1905-1911.
    92. Chung, P.-W.; Charmot, A.; Olatunji-Ojo, O. A.; Durkin, K. A.; Katz, A., Hydrolysis catalysis of miscanthus xylan to xylose using weak-acid surface sites. ACS Catalysis 2013, 4 (1), 302-310.
    93. Foo, G. S.; Van Pelt, A. H.; Krötschel, D.; Sauk, B. F.; Rogers, A. K.; Jolly, C. R.; Yung, M. M.; Sievers, C., Hydrolysis of cellobiose over selective and stable sulfonated activated carbon catalysts. ACS Sustainable Chemistry & Engineering 2015, 3 (9), 1934-1942.
    94. Hara, M.; Yoshida, T.; Takagaki, A.; Takata, T.; Kondo, J. N.; Hayashi, S.; Domen, K., A carbon material as a strong protonic acid. Angewandte Chemie 2004, 116 (22), 3015-3018.
    95. Dong, X.; Jiang, Y.; Shan, W.; Zhang, M., A novel highly ordered mesoporous carbon-based solid acid for synthesis of bisphenol-A. RSC Advances 2016, 6 (21), 17118-17124.
    96. Xing, R.; Liu, Y.; Wang, Y.; Chen, L.; Wu, H.; Jiang, Y.; He, M.; Wu, P., Active solid acid catalysts prepared by sulfonation of carbonization-controlled mesoporous carbon materials. Microporous and Mesoporous Materials 2007, 105 (1-2), 41-48.
    97. Figueiredo, J.; Pereira, M.; Freitas, M.; Orfao, J., Modification of the surface chemistry of activated carbons. Carbon 1999, 37 (9), 1379-1389.
    98. Peng, L.; Philippaerts, A.; Ke, X.; Van Noyen, J.; De Clippel, F.; Van Tendeloo, G.; Jacobs, P. A.; Sels, B. F., Preparation of sulfonated ordered mesoporous carbon and its use for the esterification of fatty acids. Catalysis Today 2010, 150 (1-2), 140-146.
    99. Osorio, A.; Silveira, I.; Bueno, V.; Bergmann, C., H2SO4/HNO3/HCl—Functionalization and its effect on dispersion of carbon nanotubes in aqueous media. Applied Surface Science 2008, 255 (5), 2485-2489.
    100. To, A. T.; Chung, P. W.; Katz, A., Weak‐acid sites catalyze the hydrolysis of crystalline cellulose to glucose in water: importance of post‐synthetic functionalization of the carbon surface. Angewandte Chemie International Edition 2015, 54 (38), 11050-11053.
    101. Cao, B.; Liu, H.; Xu, B.; Lei, Y.; Chen, X.; Song, H., Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. Journal of Materials Chemistry A 2016, 4 (17), 6472-6478.
    102. Park, T.-H.; Yeo, J.-S.; Seo, M.-H.; Miyawaki, J.; Mochida, I.; Yoon, S.-H., Enhancing the rate performance of graphite anodes through addition of natural graphite/carbon nanofibers in lithium-ion batteries. Electrochimica Acta 2013, 93, 236-240.
    103. Bazuła, P. A.; Lu, A.-H.; Nitz, J.-J.; Schüth, F., Surface and pore structure modification of ordered mesoporous carbons via a chemical oxidation approach. Microporous and Mesoporous Materials 2008, 108 (1-3), 266-275.
    104. Carà, P. D.; Pagliaro, M.; Elmekawy, A.; Brown, D. R.; Verschuren, P.; Shiju, N. R.; Rothenberg, G., Hemicellulose hydrolysis catalysed by solid acids. Catalysis Science & Technology 2013, 3 (8), 2057-2061.
    105. Feng, M.; Pu, Z.; Zheng, P.; Jia, K.; Liu, X., Sulfonated carbon nanotubes synergistically enhanced the proton conductivity of sulfonated polyarylene ether nitriles. RSC Advances 2015, 5 (43), 34372-34376.
    106. Mo, X.; Lotero, E.; Lu, C.; Liu, Y.; Goodwin, J. G., A novel sulfonated carbon composite solid acid catalyst for biodiesel synthesis. Catalysis Letters 2008, 123 (1-2), 1-6.
    107. Lee, D., Preparation of a sulfonated carbonaceous material from lignosulfonate and its usefulness as an esterification catalyst. Molecules 2013, 18 (7), 8168-8180.
    108. Pereira, M. F. R.; Soares, S. F.; Órfão, J. J.; Figueiredo, J. L., Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon 2003, 41 (4), 811-821.
    109. Couperus, P.; Clague, A.; Van Dongen, J., Carbon‐13 chemical shifts of some model carboxylic acids and esters. Organic Magnetic Resonance 1978, 11 (12), 590-597.
    110. Nakajima, K.; Hara, M., Amorphous carbon with SO3H groups as a solid Brønsted acid catalyst. ACS catalysis 2012, 2 (7), 1296-1304.
    111. Fukuhara, K.; Nakajima, K.; Kitano, M.; Kato, H.; Hayashi, S.; Hara, M., Structure and Catalysis of Cellulose‐Derived Amorphous Carbon Bearing SO3H Groups. ChemSusChem 2011, 4 (6), 778-784.
    112. Dillner, D. K.; Traficante, D. D., Complete 1H and 13C NMR assignments of the epimeric menthane‐1‐carboxylic acids. Magnetic Resonance in Chemistry 2007, 45 (3), 193-197.
    113. José, M.; Miller, A. Z.; Knicker, H., Soil-borne fungi challenge the concept of long-term biochemical recalcitrance of pyrochar. Scientific reports 2018, 8 (1), 2896.
    114. Huang, C.; Yang, Q.; Wang, S., XPS Characterization of Fiber Surface of Chemithermomechanical Pulp Fibers Modified by White-Rot Fungi. Asian Journal of Chemistry 2012, 24 (12).
    115. Ganesan, K.; Ghosh, S.; Krishna, N. G.; Ilango, S.; Kamruddin, M.; Tyagi, A., A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures. Physical Chemistry Chemical Physics 2016, 18 (32), 22160-22167.
    116. Ederer, J.; Janoš, P.; Ecorchard, P.; Tolasz, J.; Štengl, V.; Beneš, H.; Perchacz, M.; Pop-Georgievski, O., Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: XPS quantitation vs. functional speciation. RSC Advances 2017, 7 (21), 12464-12473.
    117. Ju, X.; Bowden, M.; Brown, E. E.; Zhang, X., An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydrate polymers 2015, 123, 476-481.
    118. Yue, Y., A comparative study of cellulose I and II and fibers and nanocrystals. 2011.
    119. Leng, E.; Zhang, Y.; Peng, Y.; Gong, X.; Mao, M.; Li, X.; Yu, Y., In situ structural changes of crystalline and amorphous cellulose during slow pyrolysis at low temperatures. Fuel 2018, 216, 313-321.
    120. Schwanninger, M.; Rodrigues, J.; Pereira, H.; Hinterstoisser, B., Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy 2004, 36 (1), 23-40.
    121. Rantuch, P.; Chrebet, T., Thermal decomposition of cellulose insulation. Cellulose Chem. Technol 2014, 48 (5-6), 461-467.
    122. Girisuta, B.; Janssen, L.; Heeres, H., A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chemistry 2006, 8 (8), 701-709.
    123. Shuai, L.; Pan, X., Hydrolysis of cellulose by cellulase-mimetic solid catalyst. Energy & Environmental Science 2012, 5 (5), 6889-6894.

    下載圖示
    QR CODE