簡易檢索 / 詳目顯示

研究生: 杜宜家
Tu, Yi-Chia
論文名稱: 卷積神經網路降噪技術加速全域照明之探討
Denoising Path Tracing Renderings using Convolutional Neural Networks
指導教授: 張鈞法
Chang, Chun-Fa
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 37
中文關鍵詞: 路徑追蹤全域照明OptiX光線追蹤引擎卷積神經網路降噪
英文關鍵詞: path tracing, global illumination, OptiX ray tracing engine, Convolutional Neural Networks denoising
DOI URL: http://doi.org/10.6345/NTNU201900615
論文種類: 學術論文
相關次數: 點閱:217下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年GPU硬體技術進步,光線追蹤即時繪製有了開端,在複雜的場景繪製效能仍然有限,因此本論文將使用人工智慧輔助路徑追蹤,以卷積神經網路降噪技術代替部分的路徑追蹤計算,加速全域照明場景的產生。
    蒙地卡羅方法高頻率取樣,會耗費相當高的時間成本在計算上,透過路徑追蹤低取樣頻率產生的影像,以人工智慧的方法去除蒙地卡羅方法產生的雜訊,提升影像品質。
    論文中主要探討降噪技術,透過調整卷積神經網路結構,達到降噪效果,並保持一定程度的穩定性,與不同的場景變換之下廣泛的適用性,比較預測結果與實際場景影像的差異,討論即時降噪光線追蹤遇到的問題與未來趨勢。

    In this paper, we use artificial intelligence to support path tracing. We replace part of the rendering calculations with image denoising which is implemented by convolutional neural network. This method effectively reduces rendering time to global illumination.
    Monte Carlo method takes a lot of time to render a scene. While the number of samples increases, the noise decreases. In order to generate a high quality image and reduce sampling time, we use convolutional neural network to rebuild the image, which is based on low frequency sampling. The result is almost the same as Monte Carlo rendering with higher frequency sampling image.
    Our primary focus is on the offline denoising technique. We use this technique to improve the stability and capability of the network. To process noisy images of different viewpoints, scenes and illumination, we adjust the network layers and training data. We compare a higher frequency sampling image with a low frequency sampling image whose noise is reduced. Eventually, we discuss about real time denoise rendering.

    附表目錄 vi 附圖目錄 vii 圖片引用來源 ix 模型引用來源 ix 第一章 緒論 1 第一節 研究背景 1 第二節 研究目的 2 第三節 論文架構 3 第二章 文獻探討 4 第一節 路徑追蹤 4 第二節 Rendering Equation 6 第三節 蒙地卡羅估計函數 7 第一項 Russian Roulette Path Termination 7 第四節 Nvidia應用程式加速引擎 OptiX 8 第五節 類神經網路 9 第一項 CNN、RNN 10 第二項 Autoencoder 10 第三項 Recurrent Denoising Autoencoder 11 第三章 系統實作 12 第一節 Path Tracer 12 第一項 Training Dataset的產生 14 第二節 卷積神經網路架構 15 第一項 Training 16 第二項 Loss Function 17 第三項 Metrics 17 第三節 實作整合 18 第四章 實驗結果分析 19 第一節 硬體設備 19 第二節 卷積神經網路分析 19 第一項 視覺化分析 20 第三節 Network預測結果分析 22 第一項 增加訓練場景資料 26 第二項 接縫問題 29 第三項 Skip Connection結構的結果比較 30 第四節 時間比較 34 第五章 結論與未來研究 35 參考文獻 36

    [1]Bako, S., Vogels, T., McWilliams, B., Meyer, M., Novák, J., Harvill, A., ... & Rousselle, F. (2017). Kernel-predicting convolutional networks for denoising Monte Carlo renderings. ACM Transactions on Graphics (TOG), 36(4), 97.
    [2]Buades, A., Coll, B., & Morel, J. M. (2005, June). A non-local algorithm for image denoising. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) (Vol. 2, pp. 60-65). IEEE.
    [3]Chaitanya, C. R. A., Kaplanyan, A. S., Schied, C., Salvi, M., Lefohn, A., Nowrouzezahrai, D., & Aila, T. (2017). Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM Transactions on Graphics (TOG), 36(4), 98.
    [4]Kajiya, J. T. (1986, August). The rendering equation. In ACM SIGGRAPH computer graphics (Vol. 20, No. 4, pp. 143-150). ACM.
    [5]Li, T. M., Wu, Y. T., & Chuang, Y. Y. (2012). SURE-based optimization for adaptive sampling and reconstruction. ACM Transactions on Graphics (TOG), 31(6), 194.
    [6]Mara, M., McGuire, M., Bitterli, B., & Jarosz, W. (2017, July). An efficient denoising algorithm for global illumination. In High Performance Graphics (pp. 3-1).
    [7]Mao, X. J., Shen, C., & Yang, Y. B. (2016). Image restoration using convolutional auto-encoders with symmetric skip connections. arXiv preprint arXiv:1606.08921.
    [8]Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., ... & Stich, M. (2010, July). OptiX: a general purpose ray tracing engine. In Acm transactions on graphics (tog) (Vol. 29, No. 4, p. 66). ACM.
    [9]Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008, July). Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning (pp. 1096-1103). ACM.
    [10]Goodfellow, I. Bengio, Y. Courville, A.(2016). Adaptive Computation and Machine Learning series. The MIT Press.
    [11]Suffern, K. (2016). Ray Tracing from the Ground up. AK Peters/CRC Press.
    [12]許郁文(譯) (2019, March)。實戰TensorFlow x Keras工作現場開發。碁峰。(太田滿久, 須藤広大, 黒澤匠雅, 小田大輔, 2018)
    [13]c1mone. (2017, January). Tensorflow Day19 Denoising Autoencoder [Web blog message]. Retrieved from https://ithelp.ithome.com.tw/articles/10188390
    [14]Damien, A. (2015). TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2) [Web blog message]. Retrieved from https://github.com/aymericdamien/TensorFlow-Examples
    [15]Ginn, Z. (2018, November)。談談Deconv和Unpooling [部落格文字資料]。取自https://jinzequn.github.io/2018/01/28/deconv-and-unpool/
    [16]Hanrahan, P. (2001). Monte Carlo Path Tracing. Image Synthesis Techniques. Retrieved July 2, 2019, from Stanford University, Institute for Computer Graphics Web site:http://www.graphics.stanford.edu/courses/cs348b-01/course29.hanrahan.pdf.
    [17]I code so I am. (2017, December). Day 14:循環神經網路(Recurrent Neural Network, RNN) [部落格文字資料]。取自https://ithelp.ithome.com.tw/articles/10193469
    [18]Pierobon G.(2018, November). Visualizing intermediate activation in Convolutional Neural Networks with Keras [Web blog message]. Retrieved from https://towardsdatascience.com/visualizing-intermediate-activation-in-convolutional-neural-networks-with-keras-260b36d60d0
    [19]李宏毅。(2016, October)。ML Lecture 1: Regression - Case Study [部落格影音資料]。取自 https://www.youtube.com/watch?v=fegAeph9UaA

    下載圖示
    QR CODE