研究生: |
潘姿霒 Pan, Tzu-Ying |
---|---|
論文名稱: |
三苯胺硫二苯胺系列雙錨基有機染料應用於染料敏化太陽能電池 Triphenylamine-Tethered Phenothiazine-Based Double-Anchored Organic Sensitizers for Dye-Sensitized Solar Cells |
指導教授: |
李君婷
Li, Chun-Ting |
口試委員: |
林建村
Lin, Jiann-T'suen 李權倍 Lee, Chuan-Pei |
口試日期: | 2021/07/15 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 76 |
中文關鍵詞: | 雙錨基 、染料敏化太陽能電池 、非金屬有機染料 、硫二苯胺 、三苯胺 |
英文關鍵詞: | Double-anchor, Dye-sensitized solar cells, Metal-free organic sensitizers, Phenothiazine, Triphenylamine |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202100819 |
論文種類: | 學術論文 |
相關次數: | 點閱:114 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
合成三苯胺硫二苯胺染料(TY1-TY3)作為無金屬的有機染料,應用於染料敏化太陽能電池(DSSC)。引入三苯胺(TPA)作為硫二苯胺(PTZ)的N-取代基,目的在於作為二級電子予體並建立階層式電荷轉移通道,增加主要電子予體PTZ的電荷轉移(ICT)至錨基,且提供快速的染料再生。以4-(hexyloxy)phenyl (-OC6H13)或4-(hexylthio)phenyl (-SC6H13)取代基的三苯胺硫二苯胺核心,與3-hexylthiophene連接,得到TY1。同樣的,當使用 4,4-bihexyl-4H- cyclopenta[2,1-b:3,4-b']dithiophene (CPDT)作為共軛架橋,則會得到TY2和TY3。當TPA主體上的取代基從4-(hexyloxy)phenyl轉換成 4-(hexylthio)phenyl (TY2到TY3)時,發現染料的ICT吸收峰藍移且HOMO/LUMO能階顯著的提高,是由於烷硫取代基的推電子特性比含氧類似物更強。因此基於TY3的染敏電池元件表現出低於3%的效率,歸因於 4-(hexylthio)phenyl取代基的存在,導致無效率的電子注入。當共軛架橋從3-hexylthiophene延伸到CPDT(TY1到TY2)時,ICT吸收帶變窄、莫耳消光係數變高,但HOMO/LUMO能階維持不變。這種現象指出共軛長度的延伸不利於TY染料的光吸收,從而不利於電子注入。在所有TY染料中,當TY1含有鵝去氧膽酸(CDCA)作為共吸附劑,在一個太陽光的條件下,表現出良好的光電轉換效率達 10.47%;此裝置效率優於N719 (9.50%)和HL5 (8.53%)。這些結果歸因於TY1具有適當的光吸收範圍、有效的電子注入、良好的階層式電荷轉移通道和快速的染料再生。在室內照明(Philips T5 lamp)下,基於TY1的染敏電池在1000 lux、600 lux 和300 lux下分別達到了21.2%、19.5% 和16.8%的光電效率,顯示出染敏電池在物聯網 (IoT)應用上的無限潛力。
Triphenylamine-tethered phenothiazine-based dyes (TY1–TY3) were synthesized and used as the metal-free organic sensitizers for dye-sensitized solar cells (DSSCs). Triphenylamine (TPA) entity was introduced as the N-substituent of phenothiazine (PTZ) to function as a secondary donor for building up a cascade charge transfer channel, which may enhance the intramolecular charge transfer (ICT) from PTZ to the anchors and provide fast dye regeneration. The 4-(hexyloxy)phenyl-substituted (–OC6H13) or 4-(hexylthio)phenyl-substituted (–SC6H13) TPA-tethered PTZ core were connected with 3-hexylthion π-bridge to afford TY1. Similarly, the 4-(hexyloxy)phenyl-substituted or 4-(hexylthio)phenyl- substituted TPA-tethered PTZ core were connected with the π-brigde of 4,4-bihexyl-4H- cyclopenta[2,1-b:3,4-b']dithiophene (CPDT) to afford TY2 and TY3, respectively. When the substituents on the TPA entity was switched from 4-(hexyloxy)phenyl to 4-(hexylthio)phenyl (TY2 to TY3), there were obvious blue shift in the ICT absorption peak and dramatical elevation in the HOMO/LUMO level of the dyes. These can be attributed to the stronger electron-donating power of the alkylthio substituents compared with their oxygenated analogue. Thus, TY3-based DSSCs exhibited poor cell efficiencies (<3%) due to the ineffective electron injection from the dye to TiO2. When the π-brigde of 4-(hexyloxy)phenyl-substituted TPA-tethered PTZ core was changed from 3-hexylthiophene to CPDT (TY1 to TY2), the dye exhibited a narrower ICT absortion band with extinction coefficient, but retaining similar HOMO/LUMO levels. This indicated that the extension in the conjugation length of 4-(hexyloxy)phenyl-substituted dye was detrimental to light absorption and thereby electron injection. Among all the TY dyes, the optimal TY1-based DSSC with denodexylcholic acid (CDCA) co-adsorbent exhibits good solar-to-electricity conversion efficiency up to 10.47% at sun. This cell effiency which outperformed the N719-based (9.50%) and HL5-based DSSCs (8.53%). The results were attributed to the moderate light absorption range, effective electron injection, good cascade charge transfer channel, and fast dye regeneration of TY1. Under room light illumination (Philips T5 lamp), the TY1-based DSSC reached decent cell efficiencies: 21.2%, 19.5%, and 16.8% at 1000 lux, 600 lux, and 300 lux, respectively. Therefore, the new dyes have great potential to join in the Internet of Things (IoTs) application.
[1]. Jayawardena, K. D.; Rozanski, L. J.; Mills, C. A.; Beliatis, M. J.; Nismy, N. A.; Silva, S. R., 'Inorganics-in-Organics': Recent Developments and Outlook for 4G Polymer Solar Cells. Nanoscale 2013, 5, 8411-8427.
[2]. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Solar Cell Efficiency Tables (version 44). Progress in Photovoltaics: Research and Applications 2014, 22, 701-710.
[3]. Drießen, M.; Amiri, D.; Milenkovic, N.; Steinhauser, B.; Lindekugel, S.; Benick, J.; Reber, S.; Janz, S., Solar Cells with 20% Efficiency and Lifetime Evaluation of Epitaxial Wafers. Energy Procedia 2016, 92, 785-790.
[4]. Qarony, W.; Hossain, M. I.; Hossain, M. K.; Uddin, M. J.; Haque, A.; Saad, A. R.; Tsang, Y. H., Efficient Amorphous Silicon Solar Cells: Characterization, Optimization, and Optical Loss Analysis. Results in Physics 2017, 7, 4287-4293.
[5]. Kosten, E. D.; Atwater, J. H.; Parsons, J.; Polman, A.; Atwater, H. A., Highly Efficient GaAs Solar Cells by Limiting Light Emission Angle. Light: Science & Applications 2013, 2, e45.
[6]. Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R., Organic and Solution-Processed Tandem Solar Cells With 17.3% Efficiency. Science 2018, 361, 1094-1098.
[7]. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M., Conversion of Light to Electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) Ruthenium (II) Charge-Transfer Sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes. Journal of the American Chemical Society 1993, 115, 6382-6390.
[8]. Hagfeldt, A.; Grätzel, M., Molecular Photovoltaics. Accounts of Chemical Research 2000, 33, 269-277.
[9]. Liu, L.; Xiao, Z.; Zuo, C.; Ding, L., Inorganic Perovskite/Organic Tandem Solar Cells with Efficiency Over 20%. Journal of Semiconductors 2021, 42, 020501-020504.
[10]. Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334, 629-634.
[11]. Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M., Dye-Sensitized Solar Cells with 13% Efficiency Achieved Through the Molecular Engineering of Porphyrin Sensitizers. Nature Chemistry 2014, 6, 242-247.
[12]. Brown, T.; De Rossi, F.; Di Giacomo, F.; Mincuzzi, G.; Zardetto, V.; Reale, A.; Di Carlo, A., Progress in Flexible Dye Solar Cell Materials, Processes and Devices. Journal of Materials Chemistry A 2014, 2, 10788-10817.
[13]. O'regan, B.; Grätzel, M., A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353, 737-740.
[14]. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M., Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society 2005, 127, 16835-16847.
[15]. Wu, C.-H.; Chen, M.-C.; Su, P.-C.; Kuo, H.-H.; Wang, C.-L.; Lu, C.-Y.; Tsai, C.-H.; Wu, C.-C.; Lin, C.-Y., Porphyrins for Efficient Dye-Sensitized Solar Cells Covering the Near-IR Region. Journal of Materials Chemistry A 2014, 2, 991-999.
[16]. Li, J.-Y.; Lee, C.; Chen, C.-Y.; Lee, W.-L.; Ma, R.; Wu, C.-G., Diastereoisomers of Ruthenium Dyes with Unsymmetric Ligands for DSC: Fundamental Chemistry and Photovoltaic Performance. Inorganic Chemistry 2015, 54, 10483-10489.
[17]. Bessho, T.; Yoneda, E.; Yum, J. H.; Guglielmi, M.; Tavernelli, I.; Imai, H.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M., New Paradigm in Molecular Engineering of Sensitizers for Solar Cell Applications. Journal of the American Chemical Society 2009, 131, 5930-5934.
[18]. Wang, C.-L.; Chang, Y.-C.; Lan, C.-M.; Lo, C.-F.; Diau, E. W.-G.; Lin, C.-Y., Enhanced Light Harvesting with π-Conjugated Cyclic Aromatic Hydrocarbons for Porphyrin-Sensitized Solar Cells. Energy & Environmental Science 2011, 4, 1788-1795.
[19]. Wang, S.-W.; Chou, C.-C.; Hu, F.-C.; Wu, K.-L.; Chi, Y.; Clifford, J. N.; Palomares, E.; Liu, S.-H.; Chou, P.-T.; Wei, T.-C., Panchromatic Ru (II) Sensitizers Bearing Single Thiocyanate for High Efficiency Dye Sensitized Solar Cells. Journal of Materials Chemistry A 2014, 2, 17618-17627.
[20]. Chen, B.-S.; Chen, K.; Hong, Y.-H.; Liu, W.-H.; Li, T.-H.; Lai, C.-H.; Chou, P.-T.; Chi, Y.; Lee, G.-H., Neutral, Panchromatic Ru (II) Terpyridine Sensitizers Bearing Pyridine Pyrazolate Chelates with Superior DSSC Performance. Chemical Communications 2009, 5844-5846.
[21]. Funaki, T.; Funakoshi, H.; Kitao, O.; Onozawa‐Komatsuzaki, N.; Kasuga, K.; Sayama, K.; Sugihara, H., Cyclometalated Ruthenium (II) Complexes as Near‐IR Sensitizers for High Efficiency Dye‐Sensitized Solar Cells. Angewandte Chemie International Edition 2012, 51, 7528-7531.
[22]. Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V., Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society 2001, 123, 1613-1624.
[23]. Bessho, T.; Yoneda, E.; Yum, J.-H.; Guglielmi, M.; Tavernelli, I.; Imai, H.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M., New Paradigm in Molecular Engineering of Sensitizers for Solar Cell Applications. Journal of the American Chemical Society 2009, 131, 5930-5934.
[24]. Lee, C.-P.; Li, C.-T.; Ho, K.-C., Use of Organic Materials in Dye-Sensitized Solar Cells. Materials Today 2017, 20, 267-283.
[25]. Zeng, W.; Cao, Y.; Bai, Y.; Wang, Y.; Shi, Y.; Zhang, M.; Wang, F.; Pan, C.; Wang, P., Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks. Chemistry of Materials 2010, 22, 1915-1925.
[26]. Gao, Y.; Li, X.; Hu, Y.; Fan, Y.; Yuan, J.; Robertson, N.; Hua, J.; Marder, S. R., Effect of an Auxiliary Acceptor on D–A–π–A Sensitizers for Highly Efficient and Stable Dye-Sensitized Solar Cells. Journal of Materials Chemistry A 2016, 4, 12865-12877.
[27]. Zhou, N.; Prabakaran, K.; Lee, B.; Chang, S. H.; Harutyunyan, B.; Guo, P.; Butler, M. R.; Timalsina, A.; Bedzyk, M. J.; Ratner, M. A., Metal-Free Tetrathienoacene Sensitizers for High-Performance Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2015, 137, 4414-4423.
[28]. Ezhumalai, Y.; Lee, B.; Fan, M.-S.; Harutyunyan, B.; Prabakaran, K.; Lee, C.-P.; Chang, S. H.; Ni, J.-S.; Vegiraju, S.; Priyanka, P., Metal-Free Branched Alkyl Tetrathienoacene (TTAR)-Based Sensitizers for High-Performance Dye-sensitized Solar Cells. Journal of Materials Chemistry A 2017, 5, 12310-12321.
[29]. Li, C.-T.; Wu, F.-L.; Liang, C.-J.; Ho, K.-C.; Lin, J. T., Effective Suppression of Interfacial Charge Recombination by a 12-Crown-4 Substituent on a Double-Anchored Organic Sensitizer and Rotating Disk Electrochemical Evidence. Journal of Materials Chemistry A 2017, 5, 7586-7594.
[30]. Li, C.-T.; Kuo, Y.-L.; Kumar, C. H. P.; Huang, P.-T.; Lin, J. T., Tetraphenylethylene Tethered Phenothiazine-Based Double-Anchored Sensitizers for High Performance Dye-Sensitized Solar Cells. Journal of Materials Chemistry A 2019, 7, 23225-23233.
[31]. Yao, Z.; Zhang, M.; Li, R.; Yang, L.; Qiao, Y.; Wang, P., A Metal‐Free N‐Annulated Thienocyclopentaperylene Dye: Power Conversion Efficiency of 12% for Dye‐Sensitized Solar Cells. Angewandte Chemie International Edition 2015, 127, 6092-6096.
[32]. Ren, Y.; Li, Y.; Chen, S.; Liu, J.; Zhang, J.; Wang, P., Improving the Performance of Dye-Sensitized Solar Cells with Electron-Donor and Electron-Acceptor Characteristic of Planar Electronic Skeletons. Energy & Environmental Science 2016, 9, 1390-1399.
[33]. Yao, Z.; Zhang, M.; Wu, H.; Yang, L.; Li, R.; Wang, P., Donor/Acceptor Indenoperylene Dye for Highly Efficient Organic Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2015, 137, 3799-3802.
[34]. Yao, Z.; Wu, H.; Li, Y.; Wang, J.; Zhang, J.; Zhang, M.; Guo, Y.; Wang, P., Dithienopicenocarbazole as the Kernel Module of Low-Energy-Gap Organic Dyes for Efficient Conversion of Sunlight to Electricity. Energy & Environmental Science 2015, 8, 3192-3197.
[35]. Wu, H.; Yang, L.; Li, Y.; Zhang, M.; Zhang, J.; Guo, Y.; Wang, P., Unlocking the Effects of Ancillary Electron-Donors on Light Absorption and Charge Recombination in Phenanthrocarbazole Dye-Sensitized Solar Cells. Journal of Materials Chemistry A 2016, 4, 519-528.
[36]. Zhang, L.; Yang, X.; Wang, W.; Gurzadyan, G. G.; Li, J.; Li, X.; An, J.; Yu, Z.; Wang, H.; Cai, B., 13.6% Efficient Organic Dye-Sensitized Solar Cells by Minimizing Energy Losses of the Excited State. ACS Energy Letters 2019, 4, 943-951.
[37]. Jradi, F. M.; Kang, X.; O’Neil, D.; Pajares, G.; Getmanenko, Y. A.; Szymanski, P.; Parker, T. C.; El-Sayed, M. A.; Marder, S. R., Near-Infrared Asymmetrical Squaraine Sensitizers for Highly Efficient Dye Sensitized Solar Cells: The Effect of π-Bridges and Anchoring Groups on Solar Cell Performance. Chemistry of Materials 2015, 27, 2480-2487.
[38]. Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.-i.; Hanaya, M., Highly-Efficient Dye-Sensitized Solar Cells with Collaborative Sensitization by Silyl-Anchor and Carboxy-Anchor Dyes. Chemical Communications 2015, 51, 15894-15897.
[39]. Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S. M.; Moser, J.-E.; Grätzel, M., Dye-Sensitized Solar Cells for Efficient Power Generation Under Ambient Lighting. Nature Photonics 2017, 11, 372-378.
[40]. Hua, Y.; Chang, S.; Huang, D.; Zhou, X.; Zhu, X.; Zhao, J.; Chen, T.; Wong, W.-Y.; Wong, W.-K., Significant Improvement of Dye-Sensitized Solar Cell Performance Using Simple Phenothiazine-Based Dyes. Chemistry of Materials 2013, 25, 2146-2153.
[41]. Hung, W. I.; Liao, Y. Y.; Hsu, C. Y.; Chou, H. H.; Lee, T. H.; Kao, W. S.; Lin, J. T., High‐Performance Dye‐Sensitized Solar Cells Based on Phenothiazine Dyes Containing Double Anchors and Thiophene Spacers. Chemistry–An Asian Journal 2014, 9, 357-366.
[42]. Hung, W.-I.; Liao, Y.-Y.; Lee, T.-H.; Ting, Y.-C.; Ni, J.-S.; Kao, W.-S.; Lin, J. T.; Wei, T.-C.; Yen, Y.-S., Eugenic Metal-Free Sensitizers with Double Anchors for High Performance Dye-Sensitized Solar Cells. Chemical Communications 2015, 51, 2152-2155.
[43]. Chen, J.; Ko, S.; Liu, L.; Sheng, Y.; Han, H.; Li, X., The Effect of Different Alkyl Chains on the Photovoltaic Performance of D–π–A Porphyrin-Sensitized Solar Cells. New Journal of Chemistry 2015, 39, 3736-3746.
[44]. Arakawa, Y.; Kang, S.; Watanabe, J.; Konishi, G.-i., Assembly of Thioether-Containing Rod-Like Liquid Crystalline Materials Assisted by Hydrogen-Bonding Terminal Carboxyl Groups. RSC Advances 2015, 5, 8056-8062.
[45]. Dessì, A.; Calamante, M.; Mordini, A.; Peruzzini, M.; Sinicropi, A.; Basosi, R.; Fabrizi de Biani, F.; Taddei, M.; Colonna, D.; di Carlo, A.; Reginato, G.; Zani, L., Thiazolo[5,4-d]thiazole-Based Organic Sensitizers with Strong Visible Light Absorption for Transparent, Efficient and Stable Dye-Sensitized Solar Cells. RSC Advances 2015, 5, 32657-32668.
[46]. Yum, J. H.; Hagberg, D. P.; Moon, S. J.; Karlsson, K. M.; Marinado, T.; Sun, L.; Hagfeldt, A.; Nazeeruddin, M. K.; Gratzel, M., A Light-Resistant Organic Sensitizer for Solar-Cell Applications. Angewandte Chemie International Edition 2009, 48, 1576-1580.
[47]. Liu, X.; Long, J.; Wang, G.; Pei, Y.; Zhao, B.; Tan, S., Effect of Structural Modification on the Performances of Phenothiazine-Dye Sensitized Solar Cells. Dyes and Pigments 2015, 121, 118-127.
[48]. Damaceanu, M.-D.; Constantin, C.-P.; Bejan, A.-E.; Mihaila, M.; Kusko, M.; Diaconu, C.; Mihalache, I.; Pascu, R., Heteroatom-Mediated Performance of Dye-Sensitized Solar Cells Based on T-Shaped Molecules. Dyes and Pigments 2019, 166, 15-31.
[49]. Wang, Y.; Xu, L.; Wei, X.; Li, X.; Ågren, H.; Wu, W.; Xie, Y., 2-Diphenylaminothiophene as the Donor of Porphyrin Sensitizers for Dye-Sensitized Solar Cells. New Journal of Chemistry 2014, 38, 3227-3235.
[50]. Gao, P.; Cho, D.; Yang, X.; Enkelmann, V.; Baumgarten, M.; Mullen, K., Heteroheptacenes with Fused Thiophene and Pyrrole Rings. Chemistry—A European Journal 2010, 16, 5119-5128.
[51]. Mayorga Burrezo, P.; Dominguez, R.; Zafra, J. L.; Pappenfus, T. M.; de la Cruz, P.; Welte, L.; Janzen, D. E.; Lopez Navarrete, J. T.; Langa, F.; Casado, J., Oligomers of Cyclopentadithiophene-Vinylene in Aromatic and Quinoidal Versions and Redox Species with Intermediate Forms. Chemical Science 2017, 8, 8106-8114.
[52]. Gao, P.; Tsao, H. N.; Grätzel, M.; Nazeeruddin, M. K., Fine-Tuning the Electronic Structure of Organic Dyes for Dye-Sensitized Solar Cells. Organic Letters 2012, 14, 4330-4333.