簡易檢索 / 詳目顯示

研究生: 游聲宇
Yu, Sheng-Yu
論文名稱: 探討NCM陰極材料在鋰離子電池之反應機制
Mechanistic Insight of NCM Cathode in Lithium Ion Batteries
指導教授: 陳貴賢
Chen, Kuei-Hsien
林麗瓊
Chen, Li-Chyong
吳恆良
Wu, Heng-Liang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 104
中文關鍵詞: 鋰離子電池鎳鈷錳三元材料臨場X-ray繞射臨場快速X-ray吸收奈米探針奈米繞射
英文關鍵詞: Lithium ion battery, NCM, In-situ XRD, In-situ q-XAS, Nanoprobe, Nanodiffraction
DOI URL: http://doi.org/10.6345/NTNU202000923
論文種類: 學術論文
相關次數: 點閱:252下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 謝辭 I 摘要 II Abstract III 目次 V 表次 VIII 圖次 IX 第一章、 緒論 1 1.1 前言 1 1.2鋰離子電池發展 2 1.3鋰離子電池機制 4 1.4鋰離子電池優缺點 5 1.5鋰離子正極材料介紹 6 1.5.1 LiCoO2 7 1.5.2 LiNiO2 8 1.5.3 LiMnO2 10 1.5.4 Li[Ni1-x-yCoxMny]O2三元材料 (NCM) 11 1.5.5正極材料之比較 14 1.6文獻回顧 14 1.7研究動機 20 第二章、實驗方法 21 2.1實驗藥品、器材和儀器 21 2.1.1 實驗藥品 21 2.1.2 實驗器材 22 2.1.3 實驗儀器 23 2.2 CR2032鈕扣型電池 24 2.2.1電極製備 24 2.2.2電解液配製 24 2.2.3電池組裝 25 2.3臨場X-ray繞射實驗 (D2 advanced) 26 2.3.1電極製備 26 2.3.2電池組裝 26 2.3.3實驗架設 27 2.4臨場X-ray吸收實驗(NSRRC) 28 2.4.1電池組裝 28 2.4.2實驗架設 29 2.5分析方法與儀器介紹 30 2.5.1循環伏安法 30 2.5.2 X-ray繞射儀 30 2.5.3 X-ray吸收光譜 32 2.5.4 X-ray 奈米探針實驗 (TPS-23A) 33 2.5.5 X-ray奈米繞射實驗 (TPS-21A) 34 2.5.6電感耦合等離子體-質譜法(Inductively coupled plasma-Mass Spectrometry) 35 第三章、結果與討論 37 3.1三元材料電化學表現 37 3.1.1不同鎳含量材料之循環伏安法 37 3.1.2 三元材料在充放電過程的穩定性 39 3.2臨場X-ray繞射儀 41 3.2.1 NCM523臨場X-ray繞射 42 3.2.2 NCM811臨場X-ray繞射 48 3.2.3鋰離子嵌出與結構之關係 53 3.2.4結構變化與動力學&熱力學之關係 57 3.2.5比較先前鋰離子電池之陰極材料 60 3.3臨場X-ray快速吸收 60 3.3.1 NCM523臨場X-ray快速吸收Near-Edge Spectroscopy 61 3.3.2 NCM811臨場X-ray快速吸收Near-Edge Spectroscopy 69 3.3.3 NCM523臨場X-ray快速吸收EXAFS 78 3.3.4 NCM811臨場X-ray快速吸收EXAFS 82 3.4 NCM不同電位之XAS-mapping圖 86 3.5 NCM不同電位之XRD與XRF-mapping圖 88 3.6 過渡金屬溶出對電化學表現的影響 96 第四章、結論 99 參考文獻 101

    [1] DNV GL ETO 2018 Executive summary single lowres
    [2] Tikekar, M. D., et al. Nature Energy 1(9). (2016).
    [3] Cheng, X. B., et al. Chem Rev 117(15): 10403-10473. (2017).
    [4] https://www.ch.ntu.edu.tw/nobel/2019.html (蔡蘊明)
    [5] Patridge, C. J., et al. Journal of Solid State Chemistry 203: 134-144. (2013).
    [6] K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, Materials Research Bulletin, 15, 783 (1980).
    [7] C. Delmas, C. Fouassier, and P. Hagenmuller, Physica B+C, 99, 81 (1980).
    [8] E. Antolini, Solid State Ionics, 170, 159 (2004).
    [9] K. Momma and F. Izumi, Journal of Applied Crystallography, 44, 1272 (2011).
    [10] J. R. Dahn, U. von Sacken, M. W. Juzkow, and H. Al-Janaby, Journal of The Electrochemical Society, 138, 2207 (1991).
    [11] Bianchini, M., et al. Angewandte Chemie International Edition 58(31): 10434-10458. (2019).
    [12] R. V. Moshtev, P. Zlatilova, V. Manev, and A. Sato, Journal of Power Sources, 54, 329 (1995).
    [13] W. Li, J. N. Reimers, and J. R. Dahn, Solid State Ionics, 67, 123 (1993).
    [14] R. Sathiyamoorthi, P. Manisankar, P. Shakkthivel, M. S. Lee, and T. Vasudevan, Bulletin of Materials Science, 31, 441 (2008).
    [15] S.-P.Lin,K.-Z.Fung,Y.-M.Hon,andM.-H.Hon,JournalofSolidStateChemistry, 167, 97 (2002).
    [16] C. Delmas and I. Saadoune, Solid State Ionics, 53–56, Part 1, 370 (1992).
    [17] C. Delmas, I. Saadoune, and A. Rougier, Journal of Power Sources, 44, 595 (1993).
    [18] A. Rougier, I. Saadoune, P. Gravereau, P. Willmann, and C. Delmasa, Solid State Ionics, 90, 83 (1996).
    [19] E. Zhecheva and R. Stoyanova, Solid State Ionics, 66, 143 (1993).
    [20] T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, and H. Komori, Electrochimica Acta, 38, 1159 (1993).
    [21] Y. Nishida, K. Nakane, and T. Satoh, Journal of Power Sources, 68, 561 (1997).
    [22] L. Croguennec, P. Deniard, and R. Brec, Journal of The Electrochemical Society, 144, 3323 (1997)
    [23] K. Momma and F. Izumi, Journal of Applied Crystallography, 44, 1272 (2011).
    [24] F. Capitaine, P. Gravereau, and C. Delmas, Solid State Ionics, 89, 197 (1996).
    [25] A. R. Armstrong and P. G. Bruce, Nature, 381, 499 (1996).
    [26] P. Bruce, A. Robert Armstrong, and R. Gitzendanner, Journal of Materials Chemistry, 9, 193 (1999).
    [27] Y. Shao-Horn, S. A. Hackney, A. R. Armstrong, P. G. Bruce, R. Gitzendanner, C. S. Johnson, and M. M. Thackeray, Journal of The Electrochemical Society, 146, 2404 (1999).
    [28] G. Ceder and S. K. Mishra, Electrochemical and Solid-State Letters, 2, 550 (1999).
    [29] E. Rossen, C. D. W. Jones, and J. R. Dahn, Solid State Ionics, 57, 311 (1992).
    [30] T. Ohzuku and Y. Makimura, Chemistry Letters, 744 (2001).
    [31] W.-S.Yoon,M.Balasubramanian,X.-Q.Yang,Z.Fu,D. A.Fischer,andJ.McBreen, Journal of The Electrochemical Society, 151, A246 (2004).
    [32] J. Reed and G. Ceder, Electrochemical and Solid-State Letters, 5, A145 (2002).
    [33] Y. Makimura and T. Ohzuku, Journal of Power Sources, 119–121, 156 (2003).
    [34] Z. Lu, D. D. MacNeil, and J. R. Dahn, Electrochemical and Solid-State Letters, 4, A191 (2001).
    [35] T. Ohzuku and Y. Makimura, Chemistry Letters, 30, 642 (2001).
    [36] N. Yabuuchi and T. Ohzuku, Journal of Power Sources, 119–121, 171 (2003).
    [37] Schipper, F., et al. Journal of The Electrochemical Society 164(1): A6220-A6228. (2016).
    [38] Bak, S. M., et al. ACS Appl Mater Interfaces 6(24): 22594-22601. (2014).
    [39] Noh, H.-J., et al. Journal of Power Sources 233: 121-130. (2013).
    [40] Li, W., et al. J Am Chem Soc 141(13): 5097-5101. (2019).
    [41] B. J. Hwang et al./ Chem. Mater. 2003, 15, 3676-368.
    [42] Kim, J. M.; Chung, H. T. Electrochim. Acta 2004, 49, 937–944.
    [43]李志甫, et al. 科儀新知(169): 32-42 (2009).
    [44] http://tpsbl.nsrrc.org.tw/bd_page.aspx?lang=en&pid=1028&port=23A
    [45] http://tpsbl.nsrrc.org.tw/bd_page.aspx?lang=en&pid=1019&port=21A
    [46] Jiang, L., et al. Journal of hazardous materials 351: 260-269. (2018).
    [47] Guo, J., et al. Electrochimica Acta 51(18): 3731-3735. (2006).
    [48] Ren, H., et al. Materials Chemistry and Physics 117(1): 41-45. (2009).
    [49] Kim, J.-H., et al. Journal of Materials Chemistry A 7(6): 2694-2701. (2019).
    [50] Ryu, H.-H., et al. Chemistry of Materials 30(3): 1155-1163. (2018).
    [51] Noha, H., et al. Meeting Abstracts, Citeseer. (2013).
    [52] Meng, K., et al. Electrochimica Acta 234: 99-107. (2017).
    [53] Thackeray, M., et al. Electrochemistry Communications 8(9): 1531-1538. (2006).
    [54] Thackeray, M. M., et al. Journal of Materials chemistry 17(30): 3112-3125. (2007).
    [55] Shim, H. C., et al. Physical Chemistry Chemical Physics 19(2): 1268-1275. (2017).
    [56] Ghanty, C., et al. ChemElectroChem 2(10): 1479-1486. (2015).
    [57] Lee, S.-W., et al. Journal of Electrochemical Science and Technology 3(1): 29-34. (2012).
    [58] Liao, P.-Y., et al. Electrochimica Acta 53(4): 1850-1857. (2007).
    [59] Yoon, W.-S., et al. Electrochemistry Communications 8(8): 1257-1262. (2006).
    [60] de Biasi, L., et al. The Journal of Physical Chemistry C 121(47): 26163-26171. (2017).
    [61] Kondrakov, A. O., et al. The Journal of Physical Chemistry C 121(6): 3286-3294. (2017).
    [62] Li, T., et al. Electrochemical Energy Reviews. (2019).
    [63] Van der Ven, A., et al. Physical Review B 58(6): 2975. (1998).
    [64] Seo, D.-H., et al. Physical Review B 92(11): 115118. (2015).
    [65] Yabuuchi, N., et al. Journal of The Electrochemical Society 154(4): A314-A321. (2007).
    [66] Laubach, S., et al. Physical Chemistry Chemical Physics 11(17): 3278-3289. (2009).
    [67] Yang, J. and Y. Xia ACS Appl Mater Interfaces 8(2): 1297-1308. (2016).
    [68] Liu, J., et al. Journal of The Electrochemical Society 161(1): A160. (2013).
    [69] Lee, W., et al. Advanced Energy Materials 8(4): 1701788. (2018).
    [70] Shannon, R. D. Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography 32(5): 751-767. (1976).
    [71] Cho, J., et al. Journal of The Electrochemical Society 147(1): 15-20. (2000).
    [72] Lee, K. S., et al. Journal of The Electrochemical Society 154(10). (2007).
    [73] Hwang, S., et al. Chemistry of Materials 27(17): 6044-6052. (2015).
    [74] Li, J., et al. Journal of The Electrochemical Society 162(7): A1401-A1408. (2015).
    [75] Julien, C., et al. Materials (Basel) 9(7). (2016).
    [76] Kalluri, S., et al. Advanced Energy Materials 7(1). (2017).
    [77] de Biasi, L., et al. ChemSusChem 12(10): 2240-2250. (2019).
    [78] Ryu, H.-H., et al. Journal of Materials Chemistry A 7(31): 18580-18588. (2019).
    [79] Li, H., et al. Journal of The Electrochemical Society 165(13): A2985-A2993. (2018).
    [80] Liu, T., et al. Nat Commun 10(1): 4721. (2019).
    [81] Chebiam, R., et al. Journal of The Electrochemical Society 148(1): A49-A53. (2001).
    [82] Kondrakov, A. O., et al. The Journal of Physical Chemistry C 121(44): 24381-24388. (2017).
    [83] Tsai, Y., et al. Chemistry of Materials 17(12): 3191-3199. (2005).
    [84] Yoon, W.-S., et al. Journal of the American Chemical Society 127(49): 17479-17487. (2005).
    [85] Zheng, H., et al. Journal of Power Sources 207: 134-140. (2012).
    [86] Gallus, D. R., et al. Electrochimica Acta 134: 393-398. (2014).
    [87] Ito, A., et al. Journal of Power Sources 196(16): 6828-6834. (2011).
    [88] Koga, H., et al. The Journal of Physical Chemistry C 118(11): 5700-5709. (2014).
    [89] https://www.rightek.com.tw/blog_detail.php?id=115
    [90] Su, Y., et al. ACS applied materials & interfaces 7(45): 25105-25112. (2015).
    [91] Evertz, M., et al. Journal of Power Sources 329: 364-371. (2016).

    無法下載圖示 電子全文延後公開
    2025/07/01
    QR CODE