簡易檢索 / 詳目顯示

研究生: 古書吉
Shu-Ji Gu
論文名稱: B-RAF激酶分子化合物之嵌合計算研究
Docking Computation of B-RAF Kinase-Ligand Complexes
指導教授: 孫英傑
Sun, Ying-Chieh
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 104
中文關鍵詞: 分子 嵌合B-RAF
英文關鍵詞: Docking, B-RAF
論文種類: 學術論文
相關次數: 點閱:77下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • EGFR(Epidermal Growth Factor receptors)路徑與調節細胞的生長、生殖與凋零的現象有很大相關性。B-RAF 位於EGFR路徑中,是目前癌症細胞中最常被突變的蛋白質激酶之一。在黑色素瘤、卵巢癌、甲狀腺癌與直腸癌都顯示有大量B-RAF 突變的現象。
    本研究中,主要用分子嵌合計算來研究 B-RAF抑制劑。我們首先利用資料庫中B-RAF 結晶構型進行計算,並且與已知的實驗數據去比對其相關性,看是否能再現實驗結果。之後選擇出5個 B-RAF抑制劑複合物做交叉分子嵌合計算,並且去探討當加入蛋白質活性中心附近的胺基酸在可變動的情況下,對於再現不同抑制制時的影響。
    在虛擬篩選的部份,首先用標準方法計算enrichment factor,將10個已知的活性分子與990個decoys 一起做嵌合計算,並且藉由胺基酸可變動的方式,探討是否能提高(影響) enrichment factor的結果,結果顯示在固定支鏈與部分動支鏈的結果差異並不明顯。
    最後利用高速虛擬篩選,篩選ZINC資料庫中的其中400000個分子去搜尋出與B-RAF有最佳作用力的分子,並且列出最好的100個分子。希望這些計算的結果將有助於實驗學家在設計B-RAF的抑制劑上的設計與搜尋。

    總目錄 圖目錄 ------------------------------------- IV 表目錄 ------------------------------------- VI 中文摘要 ---------------------------------- VIII 英文摘要(Abstract) ------------------------ IX 第一章 緒論 ----------------------------- 1 1-1 前言 --------------------------------------- 2 1-2 B-RAF 與MAPK 訊息傳遞路徑 ------------------ 4 1-3 與B-RAF 突變相關的癌症 --------------------- 6 1-4 B-RAF抑制劑 -------------------------------- 7 1-5 B-RAF 結構 ---------------------------------- 9 1-6 B-raf 抑制劑的結構與IC50值 ------------------ 11 1-7 分子嵌合(Docking) --------------------------- 14 1-8 研究目標 ------------------------------------ 16 第二章 理論與設定 ------------------------- 17 2-1 GOLD ---------------------------------------- 18 2-2 評分函數( Fitness Function) ----------------- 19 2-2-1 氫鍵作用力 ------------------------- 20 2-2-2 金屬原子產生的作用力 --------------- 21 2-2-3 親油性(lipophilic) ---------------- 22 2-2-4 Rotatable-bond Freezing ----------- 23 2-2-5 分子間的碰撞(Clash)與分子內的扭角 (Torsion) ------------------------- 24 2-2-6 共價鍵 與約束力(constrain) -------- 26 2-3 基因演算法(Genetic Algorithm,GA) ------------ 27 2-4 搜索效率(search efficiency) ----------------- 29 2-5 胺基酸支鏈(side chain)設定 ------------------ 30 第三章 實驗 ----------------------- 32 3-1 分析方法 ------------------------------------ 33 3-2 再現已知IC50實驗值的結晶結構 --------------- 34 3-3 設定可動胺基酸支鏈的交叉分子嵌合 ------------ 42 3-4 B-raf結構的enrichment factor ---------------- 48 3-5 高速篩選ZINC化學分子資料庫 ----------------- 52 第四章 計算結果與討論 ------------------ 54 4-1 再現B-RAF 35個活性分子與結果 --------------- 55 4-2 B-RAF設定可動胺基酸支鏈的交叉分子嵌合 ------- 57 4-2-1 蛋白質支鏈固定不動結果分析 ----------- 59 4-2-2 LYS483與LYS591可做位向搜尋的交叉嵌合 - 61 4-2-3 LYS483、TRP531、LYS591與LEU596可做支 鏈位向搜尋的交叉嵌合 ---------------- 63 4-3 B-raf結構的enrichment factor --------------- 66 4-3-1 分析/討論不同胺基酸支鏈的設定 ------- 67 4-3-2 分析/討論五個結晶構形的結果 --------- 75 4-4 高速虛擬篩選結果 ---------------------------- 80 4-4-1 前100分子結構 ----------------------- 83 4-4-2 篩選的前10個分子 ------------------ 93 第五章 結論 ---------------------- 99 參考文獻 --------------------------- 101

    1. Verlinde, C. and W.G.J. Hol, STRUCTURE-BASED DRUG DESIGN - PROGRESS, RESULTS AND CHALLENGES. Structure, 1994. 2(7): p. 577-587.
    2. Oshiro, C.M., I.D. Kuntz, and J.S. Dixon, FLEXIBLE LIGAND DOCKING USING A GENETIC ALGORITHM. Journal of Computer-Aided Molecular Design, 1995. 9(2): p. 113-130.
    3. Li, F., et al., Modeling enzyme-phage peptide recognition - Docking method based on surface electrostatic complementary and solvation energy. Chemical Journal of Chinese Universities-Chinese, 2000. 21(11): p. 1703-1707.
    4. Heritage, T.W., Virtual high-throughput screening - An application of partial match 3D searching. Abstracts of Papers of the American Chemical Society, 1998. 216: p. 056-CINF.
    5. Brady, G.P. and P.F.W. Stouten, Virtual high-throughput screening using a genetic algorithm. Abstracts of Papers of the American Chemical Society, 1998. 216: p. 012-COMP.
    6. Cavasotto, C.N. and R.A. Abagyan, Protein flexibility in ligand docking and virtual screening to protein kinases. Journal of Molecular Biology, 2004. 337(1): p. 209-225.
    7. Carlson, H.A. and J.A. McCammon, Accommodating protein flexibility in computational drug design. Molecular Pharmacology, 2000. 57(2): p. 213-218.
    8. Congreve, M., C.W. Murray, and T.L. Blundell, Keynote review: Structural biology and drug discovery. Drug Discovery Today, 2005. 10(13): p. 895-907.
    9. Eccleston, A. and R. Dhand, Signalling in cancer. Nature, 2006. 441(7092): p. 423-423.
    10. Zhang, J.M., P.L. Yang, and N.S. Gray, Targeting cancer with small molecule kinase inhibitors. Nature Reviews Cancer, 2009. 9(1): p. 28-39.
    11. Peyssonnaux, C. and A. Eychene, The Raf/MEK/ERK pathway: new concepts of activation. Biology of the Cell, 2001. 93(1-2): p. 53-62.
    12. Seger, R. and E.G. Krebs, PROTEIN KINASES .7. THE MAPK SIGNALING CASCADE. Faseb Journal, 1995. 9(9): p. 726-735.
    13. Campbell, S.L., et al., Increasing complexity of Ras signaling. Oncogene, 1998. 17(11): p. 1395-1413.
    14. Sacks, D.B., The role of scaffold proteins in MEK/ERK signalling. Biochemical Society Transactions, 2006. 34: p. 833-836.
    15. Davies, H., et al., Mutations of the BRAF gene in human cancer. Nature, 2002. 417(6892): p. 949-954.
    16. Wan, P.T.C., et al., Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell, 2004. 116(6): p. 855-867.
    17. Halaban, R., et al., PLX4032, a selective BRAFV600E kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAFWT melanoma cells. Pigment Cell & Melanoma Research, 2010. 23(2): p. 190-200.
    18. King, A.J., et al., Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Research, 2006. 66(23): p. 11100-11105.
    19. Shepherd, C., I. Puzanov, and J.A. Sosman, B-RAF Inhibitors: An Evolving Role in the Therapy of Malignant Melanoma. Current Oncology Reports, 2010. 12(3): p. 146-152.
    20. Kufareva, I. and R. Abagyan, Type-II Kinase Inhibitor Docking, Screening, and Profiling Using Modified Structures of Active Kinase States. Journal of Medicinal Chemistry, 2008. 51(24): p. 7921-7932.
    21. Liu, Y. and N.S. Gray, Rational design of inhibitors that bind to inactive kinase conformations. Nature Chemical Biology, 2006. 2(7): p. 358-364.
    22. Ramurthy, S., et al., Design and Synthesis of Orally Bioavailable Benzimidazoles as Raf Kinase Inhibitors. Journal of Medicinal Chemistry, 2008. 51(22): p. 7049-7052.
    23. Smith, A.L., et al., Selective Inhibitors of the Mutant B-Raf Pathway: Discovery of a Potent and Orally Bioavailable Aminoisoquinoline. Journal of Medicinal Chemistry, 2009. 52(20): p. 6189-6192.
    24. Tsai, J., et al., Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(8): p. 3041-3046.
    25. Hansen, J.D., et al., Potent and selective pyrazole-based inhibitors of B-Raf kinase. Bioorganic & Medicinal Chemistry Letters, 2008. 18(16): p. 4692-4695.
    26. Buckmelter, A.J., et al., The Discovery of furo 2,3-c pyridine-based indanone oximes as potent and selective B-Raf inhibitors. Bioorganic & Medicinal Chemistry Letters, 2011. 21(4): p. 1248-1252.
    27. Ren, L., et al., Non-oxime inhibitors of B-Raf(V600E) kinase. Bioorganic & Medicinal Chemistry Letters, 2011. 21(4): p. 1243-1247.
    28. Xie, P., et al., The Crystal Structure of BRAF in Complex with an Organoruthenium Inhibitor Reveals a Mechanism for Inhibition of an Active Form of BRAF Kinase. Biochemistry, 2009. 48(23): p. 5187-5198.
    29. Gould, A.E., et al., Design and Optimization of Potent and Orally Bioavailable Tetrahydronaphthalene Raf Inhibitors. Journal of Medicinal Chemistry, 2011. 54(6): p. 1836-1846.
    30. Morris, G.M., et al., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 1998. 19(14): p. 1639-1662.
    31. Makino, S. and I.D. Kuntz, Automated flexible ligand docking method and its application for database search. Journal of Computational Chemistry, 1997. 18(14): p. 1812-1825.
    32. Rarey, M., et al., A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology, 1996. 261(3): p. 470-489.
    33. Jones, G., et al., Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 1997. 267(3): p. 727-748.
    34. Friesner, R.A., et al., Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 2004. 47(7): p. 1739-1749.
    35. Mishra, N., et al., Structure based virtual screening of GSK-3 beta: Importance of protein flexibility and induced fit. Bioorganic & Medicinal Chemistry Letters, 2009. 19(19): p. 5582-5585.
    36. Koska, J., et al., Fully Automated Molecular Mechanics Based Induced Fit Protein-Ligand Docking Method. Journal of Chemical Information and Modeling, 2008. 48(10): p. 1965-1973.
    37. Davis, I.W. and D. Baker, ROSETTALIGAND Docking with Full Ligand and Receptor Flexibility. Journal of Molecular Biology, 2009. 385(2): p. 381-392.
    38. Lovell, S.C., et al., The penultimate rotamer library. Proteins-Structure Function and Genetics, 2000. 40(3): p. 389-408.
    39. Schlessinger, A. and B. Rost, Protein flexibility and rigidity predicted from sequence. Proteins-Structure Function and Bioinformatics, 2005. 61(1): p. 115-126.
    40. Cole, J.C., et al., Comparing protein-ligand docking programs is difficult. Proteins-Structure Function and Bioinformatics, 2005. 60(3): p. 325-332.
    41. Eldridge, M.D., et al., Empirical scoring functions .1. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design, 1997. 11(5): p. 425-445.
    42. Baxter, C.A., et al., Flexible docking using Tabu search and an empirical estimate of binding affinity. Proteins-Structure Function and Genetics, 1998. 33(3): p. 367-382.
    43. Fratev, F., et al., Molecular Basis of Inactive B-RAF(WT) and B-RAF(V600E) Ligand Inhibition, Selectivity and Conformational Stability: An in Silico Study. Molecular Pharmaceutics, 2009. 6(1): p. 144-157.
    44. Najmanovich, R., et al., Side-chain flexibility in proteins upon ligand binding. Proteins-Structure Function and Genetics, 2000. 39(3): p. 261-268.
    45. Irwin, J.J. and B.K. Shoichet, ZINC - A free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 2005. 45(1): p. 177-182.
    46. Lipinski, C.A., et al., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 1997. 23(1-3): p. 3-25.

    QR CODE