簡易檢索 / 詳目顯示

研究生: 曾健家
論文名稱: Fe/Co/Pt(111)的磁性研究
指導教授: 沈青嵩
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 77
中文關鍵詞: 磁光柯爾效應柯爾訊號矯頑磁場
論文種類: 學術論文
相關次數: 點閱:227下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    我們利用表面磁光柯爾效應儀(SMOKE)探測鐵超薄膜在純白金以及鈷與白金所形成的磁性基底上磁性隨著薄膜厚度的變化。

    Fe在Pt(111)上的成長,其磁性和薄膜厚度的關係受外加磁場的大小影響而有所不同,利用小磁場可以測得磁化易軸位於in plane方向,而利用大磁場測量會把磁化難軸磁化,導致在in plane與out of plane方向皆可得到磁滯訊號。在Fe薄膜的厚度為1ML時,測量不到磁滯訊號,降溫測量也是如此,有可能此樣品不具磁性,或者居禮溫度低於165K。把5ML Fe/Pt(111)經退火效應後在室溫測量磁滯訊號,發現只有在Longitudinal方向有值,當退火溫度到830K時,磁滯消失。dFe Fe/不平坦Pt用大磁場測量,會得到和dFe Fe/Pt(111)相同的結果,差別在於dFe Fe/不平坦Pt樣品Polar方向的矯頑磁場在薄膜厚度3ML時有最大值,而dFeFe/Pt(111)則是隨著厚度增加而增加。

    鐵在鈷與白金所形成的磁性基底的成長,基底一開始具有Polar方向的磁性,鍍上鐵後,Polar方向的磁性消失,最後隨著層數增加,Polar與Longitudinal方向皆測的到磁滯訊號。基底若一開始具有Longitudinal方向的磁性,鍍上鐵後,Longitudinal方向的磁性仍在,隨著層數增加,Polar方向的磁性也顯現出來,最後兩個方向皆有訊號。

    經由以上鐵薄膜在不同基底的磁性探討,和實驗室之前的研究統整,希望將來能夠把鐵磁性物質在白金上的磁性與結構變化做個完整的探究。

    目錄 Chapter 1 緒論.........................1 Chapter 2 基本原理.....................3 2-1 薄膜成長...........................3 2-1-1成長模式..........................4 2-1-2 影響薄膜成長的因素...............4 2-2 磁性物質...........................5 2-2-1磁性物質的種類....................5 2-2-2 鐵磁性物質.......................7 2-2-3 居禮溫度.........................8 2-3 磁異向性...........................8 2-3-1磁異向能..........................9 2-3-2影響磁異向性的因素................9 Chapter 3 實驗原理與儀器..................13 3-1 超高真空系統..........................13 3-1-1 真空理論............................13 3-1-2 超高真空腔與抽氣系統................15 3-1-3 樣品清潔與升降溫系統................18 3-1-4蒸鍍系統.............................19 3-1-5 其他系統............................20 3-2 歐傑電子能譜術........................20 3-2-1 歐傑效應............................20 3-2-2 歐傑電子能譜........................22 3-2-3 阻滯電場分析儀......................23 3-2-4 歐傑電子能譜術之應用................25 3-3 歐傑訊號計算薄膜厚度..................27 3-3-1 歐傑訊號計算薄膜厚度................28 3-3-2 平均自由徑的計算....................29 3-3-3 back-scattering terms 的計算.......29 3-3-4 cosθ的計算.........................30 3-3-5 薄膜厚度之計算......................30 3-4 低能量電子繞射儀......................35 3-4-1 LEED之基本原理.....................35 3-4-2 RFA-LEED工作原理...................36 3-5 磁光柯爾效應..........................37 3-5-1磁光柯爾效應.........................37 3-5-2 SMOKE及測量原理....................39 3-5-3 表面磁光柯爾效應儀的元件............40 Chapter 4 實驗結果與討論............................43 4-1 樣品準備........................................43 4-2 dFe Fe/Pt(111)的磁性探測.......................44 4-2-1 磁場電流5A,step=0.5A對dFe Fe/Pt(111)的磁性探測...44 4-2-2 磁場電流1A,step=0.1A對dFe Fe/Pt(111)的磁性探測...48 4-2-3 磁場電流1A,step=0.02A對dFe Fe/Pt(111)的磁性探測..51 4-2-4 利用不同外加磁場條件測量dFe Fe/Pt(111)磁性的綜合比較53 4-2-5 dFe Fe/不平坦Pt的磁性探測........................60 4-2-6 1ML Fe/Pt(111)降溫...............................63 4-3 5ML Fe/Pt(111)升溫降回300K測量.....................64 4-4 dFe Fe/ dCo Co/Pt(111)的磁性探測...................68 4-4-1 dFe Fe/2 ML Co/Pt(111)的磁性探測.................68 4-4-2 dFe Fe/5.5ML Co/Pt(111)的磁性探測................71 4-5 鐵薄膜磁性隨厚度及基底變化的探究...................74 Chapter 5 結論..........................................76

    參考資料
    [1]H. Le Gall,R. Sbiaa and S. Pogossian,"Present and future of magneto-optical recording materials and technology ", Journal of Alloys and Compounds 275-277 (1998), pp. 677.
    [2]黃得瑞,"光碟記錄媒體的發展介紹",材料會訊,第6卷,第3期(1999), p.6.
    [3]謝漢萍,"光碟記錄的發展及前瞻",材料會訊,第6卷,第3期(1999), p.16.
    [4]Herman J. Borg and Roel van Woudenberg, "Trends in optical recording",Journal of Magnetism and Magnetic Materials 193(1999), p. 519.
    [5] Pei-Yih Liu and Han-Ping D. Shieh,"Center aperture detection on magnetically induced super resolution magneto-optical disks", Journal of Magnetism and Magnetic Materials 155(1996), p. 385.
    [6] Y. Murakami,A. Takahashi,S. Terashima,"High density recording with a super resolution magneto-optical disk using magnetic field modulation method", Journal of Physics and Chemistry of Solids 56(1995) p. 1535.
    [7] H. Awano,S. Ohnuki,H. Shirai and A. Ohta,"Magnetic domain expansion readout for amplification of an ultra high density magneto-optical recording signal", Applied Physics Letters,Vol. 69,No. 27(1996),p. 4257.
    [8] D. Lambeth, in: G.C. Gadjipanayis (Ed.), Magnetic Hysteresis in Novel Magnetic Materials, NATO ASI Series E 338, 767 (1997)
    [9] Rugian Wu, Chun Li and A. J. Freeman, J. Magn. Magn. Mater. 99,71 (1991)
    [10] P. F. Caraia, J. Appl. Phys. 63, 5066 (1988)
    [11] W. B. Zeper, F. J. A. M. Greidanus, P. F. Carcia and C. R. Fincher, J. Appl. Phys., 65, 4971 (1989)
    [12] Sang-Koog Kim, Vladimir A. Chernov, Yang-Mo Koo, J. Magn. Magn. Mater. 170, L7 (1997)
    [13] Allenspach, R., Stampanoni, M. and Bischof, A., Phys. Rev. Lett., 65, 3344 (1990)
    [14] C. Chappert and P. Bruno, J. Appl. Phys. 64 (10), 5736 (1988)
    [15] A. Kirilyuk, J. Ferré, V. Grolier, J. P. Jamet., D. Renard, J. Magn. Magn. Mater. 171, 45 (1997)
    [16] N. C. Koon and B. T. Jonker, Phys. Rev. Lett., 59, 2463 (1987)
    [17] W. L. O’Brien and B. P. Tonner, Serface Science, 334, 10 (1995).
    [18] M. T. Kief, W. F. Egelhoff, Phys.Rev. B47, 10785 (1993).
    [19] M. T. Lin, J. Shen, W. Kuch, H. Jenniches, M. Klaua, C. M. Schneider, and J. Kirschner, Phys. Rev. B55, 5886 (1997).
    [20] B. Feldmann, B. Schirmer, A. Sokoll, and M. Wuttig, Phys. Rev. B57, 1014 (1998).
    [21] D. Spisak, J. Hafner, J. Magn. Magn. Mater, 272-276, 1884 (2004).
    [22] W. L. O’Brien and B. P. Tonner, Phys. Rev. B52, 21 (1995).
    [23] L. Argile and G.E. Rhead, Surf. Sci. Rep. 10, 277 (1989)
    [24] E. Bauer, Appl. Surf. Sci. 11/12, 479 (1982)
    [25] 蔡萍實,國立台灣師範大學碩士論文 (1992)
    [26] B. Dodson, Phys. Rev. B, 36, 6288 (1987)
    [27] R. Shimizu, Jap. J. Appl. Phys., 22, 1631 (1983)
    [28] S. D. Bader, J. Magn. Magn. Mater. 100, 440 (1991)
    [29] E. T. Kulatov, Yu. A. Uspenskii, S. V. Halilov, J. Magn. Magn. Mater., 163, 331 (1996)
    [30] B. Heinrich and J. A. C. Bland “Ultrathin Magnetic structures Ⅰ Ch2
    [31] 張喣,李學養,磁性物理學,Ch6 (1982)
    [32] R. Lawerence Comstock, “Introduction to Magnetism and magnetic Recording” (1999)
    [33] Ching-Ray Chang and D. R. Fredkin, J. Appl. Physw., 63, 3435 (1988)
    [34] J. A. C Bland, B. Heinrich(Eds), “Ultrathin Magnetic Structures Ⅰ”, 66-68 (1994)
    [35] H. J. G. Draaisma, W. J. M. de Jonge, J. Appl. Phys. 64, 3610 (1988)
    [36] L. Neel, J. de Phys. Et le Rad. 15, 225 (1954)
    [37] G. Etrl, J. Küppers, “Low Energy Electrons and Surface Chemistry” (1985)
    [38] D. Chattarji, “The Theory of Auger Transitions”, London: Academic Press (1976)
    [39] D. L. Walters and C. P. Bhalla, Phys. Rev, A3, 1919 (1971)
    [40] D. Briggs and M. P. Seah, “Practical Surface Analysis 2nd “ (1990)
    [41] M. P. Seah, J. Vac. Sci. Technol., 17, 16 (1980)
    [42] Lawerence E. Davis, Noel C. MacDonald, Paul W. Palmberg, Gerald E. Riach and Roland E. Weber, “Handbook of Auger Electron Spectroscopy”, (1978)
    [43] C. J. Powell, J. Electron Spectrosc., 47, 197 (1988)
    [44] A. Jablonski and H. Ebel, Surf. Interface Anal., 11, 627 (1988)
    [45] C. J. Powell, Surf. Sci., 299/300, 34 (1994)
    [46] S. Tanuma, C. J. Powell and D. R. Penn, J. Vac. Sci. Technol. A, 8, 2213 (1990)
    [47] S. Tanuma, C. J. Powell and D. R. Penn, Surf. Interface Anal., 20, 77 (1993)
    [48] S. Ichimura and R. Shimizu, Surf. Sci., 112, 386 (1981)
    [49] J. A. Bearden and A. F. Burr, Rev. Mod. Phys., 39, 125 (1967)
    [50] M. P. Seah, /surf. Sci., 32, 703 (1972)
    [51] 潘扶民,儀器總覽—表面分析儀器,1 (1998)
    [52] Charles Kittel, “Introduction to Solid State Physics” (1991)
    [53] 盧治權,儀器總覽—表面分析儀器,50 (1998)
    [54] Z. Q. Qiu, J. Pearson and S.D. Bader, Phys. Rev. B. 45, 7211 (1992)
    [55]國立台灣師範大學物理研究所碩士論文,何慧瑩 (1999)。
    [56]國立台灣師範大學物理研究所博士論文,蘇炯武 (2003)。
    [57]國立台灣師範大學物理研究所碩士論文,黃譯蓁 (2005)
    [58]國立台灣師範大學物理研究所碩士論文,林元祥 (2005)
    [59]國立台灣師範大學物理研究所碩士論文,陳福全 (2001)
    [60] Wookje Kim, J. H. Choi, T. –U. Nahm, S. H. Song, and S. –J, Oh, Journal of the Korean Physical Society, 44, 722 (2004).
    [61] C. S. Shem, H. Y. Ho, and S. H. Lin, Phys. Rev. B70, 214438 (2004)
    [62] F. C. Chen, Y. E. Wu, C. W. Su, and C. S. Shern, Phys. Rev. B66, 184417(2002)
    [63] J. Thomassen, F. May, B. Feldmann, M. Wuttig, and H. Ibach, Phys. Rev. Lett. 69, 3831 (1992).
    [64] D. Li, M. Freitag, J. Pearson, Z. Q. Qiu, and S. D. Bader, Phys. Rev. Lett. 72, 3112 (1994).

    QR CODE