簡易檢索 / 詳目顯示

研究生: 楊宗于
Yang, Zong-Yu
論文名稱: 低電壓同調電子顯微鏡光學系統的設計
Design of optical columns for low-voltage coherent electron microscopy.
指導教授: 傅祖怡
Fu, Tsu-Yi
黃英碩
Hwang, Ing-Shouh
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 69
中文關鍵詞: 同調繞射成像術靜電透鏡單原子針電子顯微鏡低能量電子束
英文關鍵詞: coherent diffractive imaging, electrostatic lens, single-atom electron sources, electron microscopy, low-energy electron beams
DOI URL: http://doi.org/10.6345/NTNU201900479
論文種類: 學術論文
相關次數: 點閱:73下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於高成像對比度和低輻射損傷,開發低電壓電子顯微鏡已成為普遍趨勢。最近,已經證明了電壓低至15-40kV的原子分辨透射電子顯微鏡。然而,在低於10kV的電壓下實現原子解析度是非常困難的。獲得高解析度圖像的另一種方法是同調繞射成像(CDI)。已經開發出低電壓同調電子顯微鏡以滿足CDI的取樣要求並調節光束能量。在這項工作中,我們分析了由發射器所構建的電子源光學系統的配置和操作條件。並獲得了最佳幾何形狀,我們將使用幾何結構為我們的低電壓同調電子顯微鏡製造光學系統。

    Developing low-voltage electron microscopes has been a general trend due to high imaging contrast and low radiation damage. Recently, atom-resolved transmission electron microscopes with voltages as low as 15-40 kV have been demonstrated. However, achieving atomic resolution at voltages lower than 10 kV is extremely difficult. An alternative approach to obtaining high resolution images is coherent diffraction imaging (CDI). A low-voltage coherent electron microscope has been being developed to fulfill oversampling requirement of CDI and adjust beam energies. In this work, we analyzed configurations and operating conditions of optical columns of electron sources built from a nano-emitter. An optimal geometry was obtained and we will use the geometry to manufacture an optical column for our low-voltage coherent electron microscope.

    摘要 I Abstract II 章節目錄 III 圖目錄 V 表目錄 VIII 第一章 緒論 1 1.1研究動機 1 第二章 文獻回顧 4 2.1 同調繞射成像(Coherent diffractive imaging,CDI) 4 2.2 帶電粒子光學系統模擬 12 第三章 實驗儀器與架構 22 3.1 實驗環境-超高真空腔體 22 3.2 實驗成像與分析 27 第四章 靜電透鏡最佳化 36 4.1 帶電粒子光學(Charged Particle Optice,CPO2D/CPO3D) 37 4.2 SIMION物鏡模擬 55 4.3 結合聚焦透鏡和物鏡 61 第五章 結論和未來展望 64 參考文獻 65

    1. E. Ruska, M. Knoll, “Die magnetische Sammelspule fuer schnelle Elektronenstrahlen”, Z. Techn. Physik 12 389 (1931).
    2. O. Scherzer, “Über einige Fehler von Elektronenlinsen” Z. Phys. 101 593 (1936).
    3. M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban, “Electron microscopy image enhanced”, Nature 392 768 (1998).
    4. O.L. Krivanek, N. Dellby, A.J. Spence, R.A. Camps, L.M. Brown, “Aberration correction in the STEM”, Inst. Phys. Conf. Ser. 153 35 (1997).
    5. C. Kisielowski, B. Freitag, M. Bischoff, H. van Lin, S. Lazar, G. Knippels, P. Tiemeijer, M. van der Stam, S. von Harrach, M. Stekelenburg, M. Haider, S. Uhlemann, H. Müller, P. Hartel, B. Kabius, D. Miller, I. Petrov, E.A. Olson, T. Donchev, E.A. Kenik, A.R. Lupini, J. Bentley, S.J. Pennycook, I.M. Anderson,
    A.M. Minor, A.K. Schmid, T. Duden, V. Radmilovic, Q.M. Ramasse, M. Watanabe, R. Erni, E.A. Stach, P. Denes, U. Dahmen, “Detection of Single Atoms and Buried Defects in Three Dimensions by Aberration-Corrected Electron Microscope with 0.5-Å Information Limit”, Microsc. Microanal. 14 469 (2008).
    6. R.F. Egerton, “Choice of operating voltage for a transmission electron microscope”, Ultramicroscopy 145 85 (2014).
    7. T. Sasaki, H. Sawada, F. Hosokawa, Y. Kohno, T. Tomita, T. Kaneyama, Y. Kondo, K. Kimoto, Y. Sato, K. Suenaga, “Performance of low-voltage STEM/TEM with delta corrector and cold field emission gun”, J. Electr. Microsc. 59 s7 (2010).
    8. O.L. Krivanek, N. Dellby, M.F. Murfitt, M.F. Chisholm, T.J. Pennycook, K. Suenaga, V. Nicolosi, “Gentle STEM: ADF imaging and EELS at low primary energies”, Ultramicrscopy 110 935 (2010).
    9. U. Kaiser, J. Biskupek, J.C. Meyer, J. Leschner, L. Lechner, H.H. Rose, M. Stoger-Pollach, A.N. Khlobystov, P. Hartel, H. Müller, M. Haider, S. Eyhusen,
    G. Benner, “Transmission electron microscopy at 20 kV for imaging and spectroscopy”, Ultramicroscopy 111 1239 (2011).
    10. D.C. Bell, N. Erdman, “Low Voltage Electron Microscopy: Principles and Applications”, (Wiley, New Jersey 2013).
    11. J.R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform”, Opt. Lett. 3 27 (1978).
    12. J.R. Fienup, “Phase retrieval algorithms: a comparison”, Appl. Opt. 21 2758 (1982).
    13. J.M. Miao, D. Sayre, H.N. Chapman, “Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects“, J. Opt. Soc. Am. A 15 1662 (1998).
    14. J. Miao, J. Kriz, D. Sayre, “The oversampling phasing method”, Acta Cryst. D
    56 1312 (2000).
    15. H.M.L. Faulkner, J.M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm”, Phys. Rev. Lett. 93 023903 (2004).
    16. A.M. Maiden, J.M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging“, Ultramicroscopy 109 1256 (2009).
    17. J. Miao, P. Charalambous, J. Kriz, D. Sayre, “Extending the methodology of X- ray crystallography to allow imaging of micrometer-sized non-crystalline specimens“, Nature 400 342 (1999).
    18. U. Weierstall, Q. Chen, J.C.H. Spence, M.R. Howells, M. Isaacson, R.R. Panepucci, “Image reconstruction from electron and X-ray diffraction patterns using iterative algorithms: experiment and simulation“, Ultramicroscopy 90 171 (2002).
    19. J.M. Zuo, I. Vartanyants, M. Gao, R. Zhang, L.A. Nagahara, “Atomic resolution imaging of a carbon nanotube from diffraction intensities“, Science 300 1419 (2003).
    20. S. Morishita, J. Yamasaki, K. Nakamura, T. Kato, N. Tanaka, “Diffractive imaging of the dumbbell structure in silicon by spherical-aberration corrected electron diffraction”, Appl. Phys. Lett. 93 183103 (2008).
    21. W.J. Huang, J.M. Zuo, B. Jiang, K.W. Kwon, M. Shim, “sub-ångström- resolution diffractive imaging of single nanocrystals”, Nat. Phys. 5 129 (2009).
    22. L.D. Caro, E. Carlino, G. Caputo, P.D. Cozzoli, C. Giannin, “Electron diffractive imaging of oxygen atoms in nanocrystals at sub- sub-ångström resolution”, Nat. Nanotechnol. 5 360 (2010).
    23. O. Kamimura, Y. Maehara, T. Dobashi, K. Kobayashi, R. Kitaura, H. Shinohara,H. Shioya, K. Gohara, “Low voltage electron diffractive imaging of atomic structure in single-wall carbon nanotubes”, Appl. Phys. Lett. 98 174103 (2011).
    24. O. Kamimura, T. Dobashi, K. Kawahara, T. Abe, K. Gohar, “10-kV diffractive imaging using newly developed electron diffraction microscope”, Ultramicroscopy. 110 130 (2010).
    25. M.J. Humphry, B. Kraus, A.C. Hurst, A.M. Maiden, J.M. Rodenburg, “Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging”, Nature Commu. 3 730 (2012).
    26. L.N. Longchamp, T. Latychevskaia, C. Escher, H.W. Fink, “Graphene unit cell imaging by holographic coherent diffraction“, Phys. Rev. Lett. 110 255501 (2013).
    27. Zangwill ZA, “Physics at Surface”, (Cambridge University, Cambridge 1998).
    28. J.C.H. Spence, U. Weierstall, M. Howells, “Coherence and sampling requirements for diffractive imaging“, Ultramicroscopy 101 149 (2004).
    29. C.C. Chang, H.S. Kuo, I.S. Hwang, T.T. Tsong, “A fully coherent electron beam from a noble-metal covered W(111) single-atom emitter“, Nanotechnology 20 115401 (2009).
    30. I.S. Hwang, H.S. Kuo, C.C. Chang, T.T. Tsong, “Noble-metal covered W(111) single-atom electron sources”, J. Electrochem. Soc. 157 7 (2010).
    31. G. Pozzi, “Theoretical considerations on the spatial coherence in field emission electron microscopes”, Optik 77 69 (1987).
    32. D.B. Williams, C.B. Carter, “Transmission Electron Microscopy”, (Springer, New York 2009).
    33. R.W. Gerchberg, W.O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures”, Optik 35 237 (1972).
    34. R.H.T. Bates, “Fourier phase problems are uniquely soluble in more than one dimension. I: underlying theory”, Optik 61 247 (1982).
    35. J.R. Fienup, “Itertative method applied to image reconstruction and to computer- generated holograms”, Opt. Eng. 19 297 (1980).
    36. C. Y. Lin, Low-voltage coherent electron microscopy based on a highly coherent
    electron source built from a nanoemitter, J. Vac. Sci. Technol. B 36, 032901 (2018).
    37. P. Grivet, “Electron optics”, (Pergamon, Oxford 1972)
    38. D.W.O. Heddle, “Electrostatic lens systems”, (IOP, London 2000).
    39. J.H. Moore, C.C. Davis, M.A. Coplan, “Building Scientific Apparatus”, (Cambridge, New York 2009).
    40. E. Harting, F.H. Read, “Electrostatic lenses”, (Elsevier, Amsterdam 1976).
    41. M. Szilagyi, J. Szep, “Optimum design of electrostatic lenses”, J. Vac. Sci. Technol. B 6 953 (1988).
    42. J. Orloff, L.W. Swanson, “An asymmetric electrostatic lens for field-emission microprobe applications”, J. Appl. Phys. 50 2494 (1979).
    43. C. Y. Lin, Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source, J. Vac. Sci. Technol. A 34, 021602 (2016).
    44. C. Y. Lin, Low-kilovolt coherent electron diffractive imaging based on a single-atom electron source, national Taiwan university doctoral dissertation (2016).
    45. Bo-Hyun Chung,Seung Jae Kim, “Design and Fabrication of a Scanning Electron Microscope (SEM) with an Electrostatic Column for Process Embedment” , J. kor. Physical Society. 1287 (2013).
    46. F.H. Read, N.J. Bowring, “The CPO programs and the BEM for charged particle optics”, Nucl. Instr. Meth. A 645 273 (2011).

    下載圖示
    QR CODE