簡易檢索 / 詳目顯示

研究生: 郭碩元
論文名稱: 果蠅心臟功能參數快速量化之自動化訊號處理
Automated signal processing algorithm for rapid quantification of heart-beat parameters in Drosophila
指導教授: 郭文娟
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 44
中文關鍵詞: 心跳參數隨機沃克分割自動位準掃頻式光學同調斷層掃描術
英文關鍵詞: Heart-beat parameters, Random walker segmentation, Auto threshold, Swept source optical coherence tomography, Angiotensin converting enzyme-related
論文種類: 學術論文
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 心跳週期(Heart period, HP)、心跳率(Heart rate, HR)、舒張期(Diastolic interval, DI)、收縮期(Systolic interval, SI)、舒張和收縮直徑(Diastolic and Systolic diameter, EDD, ESD)是心臟跳動的重要參數。利用以上參數可計算出關鍵的衡量指數:心律不整指數 (Arrhythmicity index, AI)和心肌收縮比率(Fractional shortening, FS)。

    於本論文中,提出兩種評估果蠅心臟功能的訊號處理方法。第一種為「Brightness結合M-mode法」。每張圖的亮度在心臟舒張時變暗,在心臟收縮時變亮,所以利用亮度改變可決定心臟此時的狀態。在此方法中,能自動化取得的參數有心跳率、心跳週期、舒張直徑、收縮直徑,再藉由M-mode圖手動求舒張期、收縮期。

    第二種為「Random Walker結合Auto Threshold法」。這是一種專門針對果蠅心跳收縮舒張參數所開發的快速分析的全新自動化演算法。此方法利用Random Walker分割演算法圈出心臟外圍。得到每個時間點的心臟開閉狀態後,再採用auto threshold決定收縮與舒張的分界。一旦確立後,上述每一項心臟參數都可自動化取得。這套流程十分可靠,且省時、容易操作,適合大量資料和長時間分析。

    我們的演算方法結合掃頻式光學同調斷層掃描術(Swept source optical coherence tomography, SS-OCT)紀錄果蠅心跳,並利用此二種演算流程,探討在w1118、Acer 9i和w1118、AcerΔ168不同品系果蠅的心臟功能。

    Heart period (HP), heart rate (HR), diastolic and systolic intervals (DI, SI), diastolic and systolic diameter (EDD, ESD) are important parameters for heart beat. These parameters can be used to calculate the decisive factor, such as arrhythmicity index (AI) and fractional shortening (FS), for determining the cardiac function of the heart.

    In this thesis, we proposed two processing algorithms for assessing heart condition of drosophila. The first one is called “ROI Brightness Combines with M-mode Algorithm”. The frame brightness decreases during diastole and increases during systole, so the change in brightness can determine the state of the heart. But in this algorithm we can only get HR, HP, EDD, and ESD automatically, and use M-mode graph to calculate DI and SI manually.

    The second algorithm is called “Random Walker Combines with Auto Threshold Algorithm”. This is a new and fully automatic algorithm that is specialized for rapid analysis of beat-to-beat contraction-relaxation parameters of the heart in Drosophila. It uses random walker segmentation algorithm to precisely circle the heart edge. After get each state of heart opening, we adopt auto threshold method to clearly distinguish the heart diastolic and systolic condition. Once obtained the dividing line between diastole and systole, we can quantify every heart-beat parameters of drosophila automatically. This methodology is robust, timesaving, and easy to use. It’s very suitable for large samples and over significant periods of time.

    Our methodology combines high-speed swept-source optical coherence tomography (SS-OCT) for recording of beating hearts. We use these two methods to point out the different cardiac functions in w1118, Acer 9i and AcerΔ168 strain of drosophila.

    List of Figures VI List of Tables IX Chapter 1 Introduction 1 Chapter 2 Background 4 2.1 Renin-angiotensin system (RAS) and Angiotensin-converting enzyme (ACE) family 4 2.2 Swept source optical coherence tomography (SS-OCT) 7 2.3 Random walker segmentation algorithm 9 2.4 Auto threshold principle 11 Chapter 3 Experiment and signal processing algorithm 12 3.1 Live and intact drosophila measurement in SS-OCT 12 3.2 “ROI Brightness Combines with M-mode Algorithm” 14 3.3 “Random Walker Combines with Auto Threshold Algorithm” 17 Chapter 4 Result and discussion 21 4.1 Male w1118 and male Acer 9i strains using “ROI Brightness Combines with M-mode Algorithm” 21 4.1.1 HP, HR of male w1118 and male Acer 9i 22 4.1.2 DI, SI of male w1118 and male Acer 9i 23 4.1.3 EDD, ESD of male w1118 and male Acer 9i 24 4.1.4 AI, FS of male w1118 and male Acer 9i 25 4.1.5 All the parameters of male w1118 and male Acer 9i using “ROI Brightness Combines with M-mode Algorithm” 27 4.2 Male w1118 and male AcerΔ168 using “Random Walker Combines with Auto Threshold Algorithm” 28 4.2.1 HP, HR of male w1118 and male AcerΔ168 29 4.2.2 DI, SI of male w1118 and male AcerΔ168 30 4.2.3 EDA, ESA of male w1118 and male AcerΔ168 32 4.2.4 AI, FS of male w1118 and male AcerΔ168 34 4.2.5 All the parameters of male w1118 and male AcerΔ168 using “Random Walker Combines with Auto Threshold Algorithm” 36 4.3 Discussion 37 Chapter 5 Conclusions and future prospects 38 References 39

    [1] Akasaka, T., et al., The ATP-sensitive potassium (KATP) channel-encoded dSUR gene is required for Drosophila heart function and is regulated by tinman. Proceedings of the National Academy of Sciences, 2006. 103(32): p. 11999.

    [2] Cammarato, A., et al., Myosin transducer mutations differentially affect motor function, myofibril structure, and the performance of skeletal and cardiac muscles. Molecular Biology of the Cell, 2008. 19(2): p. 553-562.

    [3] Dulcis, D. and R.B. Levine, Glutamatergic innervation of the heart initiates retrograde contractions in adult Drosophila melanogaster. The Journal of neuroscience, 2005. 25(2): p. 271.

    [4] Ocorr, K., et al., KCNQ potassium channel mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging. Proceedings of the National Academy of Sciences, 2007. 104(10): p. 3943.

    [5] Monier, B., et al., Steroid-dependent modification of Hox function drives myocyte reprogramming in the Drosophila heart. Development, 2005. 132(23): p. 5283-93.

    [6] Paternostro, G., C. Vignola, D.U. Bartsch, J.H. Omens, A.D. McColloch, and J.C. Reed. 2001. Age-associated cardiac dysfunction in Drosophila melanogaster. Circ. Res. 88:1053-1058.

    [7] Robbins, J., et al., Genetic variation affecting heart rate in Drosophila melanogaster. Genetical research, 1999. 74(02): p. 121-128.

    [8] Wessel, R.J. and R. Bodmer, Screening assays for heart function mutants in Drosophila. Biotechniques, 2004. 37(1): p. 58-+.

    [9] Wolf, M.J., et al., Drosophila as a model for the identification of genes causing adult human heart disease. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(5): p. 1394-1399.


    [10] Johnson, E., J. Ringo, and H. Dowse, Modulation of Drosophila heartbeat by neurotransmitters. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 1997. 167(2): p. 89-97.

    [11] Ray, V.M. and H.B. Dowse, Mutations in and deletions of the Ca2+ channel-encoding gene Cacophony, which affect courtship song in Drosophila, have novel effects on heartbeating. Journal of Neurogenetics, 2005. 19(1): p. 39-56.

    [12] White, L.A., J.M. Ringo, and H.B. Dowse, Effects of Deuterium-Oxide and Temperature on Heart-Rate in Drosophila-Melanogaster. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 1992. 162(3): p. 278-283.

    [13] Zornik, E., K. Paisley, and R. Nichols, Neural transmitters and a peptide modulate Drosophila heart rate. Peptides, 1999. 20(1): p. 45-51.

    [14] Nikoh, N., A. Duty, and G. Gibson, Effects of population structure and sex on association between serotonin receptors and Drosophila heart rate. Genetics, 2004. 168(4): p. 1963-1974.

    [15] Ashton, K., et al., Quantitative trait loci for the monoamine-related traits heart rate and headless behavior in Drosophila melanogaster. Genetics, 2001. 157(1): p. 283-294.

    [16] Dasari, S. and R.L. Cooper, Direct influence of serotonin on the larval heart of Drosophila melanogaster. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 2006. 176(4): p. 349-357.

    [17] Wasserthal, L.T., Drosophila flies combine periodic heartbeat reversal with a circulation in the anterior body mediated by a newly discovered anterior pair of ostial valves and 'venous' channels. Journal of Experimental Biology, 2007. 210(21): p. 3707-3719.

    [18] Sanyal, S., et al., Conditional mutations in SERCA, the sarco-endoplasmic reticulum Ca2+-ATPase, alter heart rate and rhythmicity in Drosophila. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 2006. 176(3): p. 253-263.

    [19] Papaefthimiou, C. and G. Theophilidis, An in vitro method for recording the electrical activity of the isolated heart of the adult Drosophila melanogaster. In Vitro Cellular & Developmental Biology-Animal, 2001. 37(7): p. 445-449.

    [20] Ocorr, K., et al., A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. Biotechniques, 2009. 46(2): p. 101-+.

    [21] Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Pufialito C A, and Fujimoto J G 1991 Optical coherence tomography Science 254 1178-81

    [22] M. A. Choma, S. D. Izatt, R. J. Wessells, R. Bodmer, and J. A. Izatt,“In vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography,” Circulation 114(2), E35–E36 ,2006.

    [23] Ma L, Bradu A, Podoleanu AG, Bloor JW, Arrhythmia caused by a Drosophila tropomyosin mutation is revealed using a novel optical coherence tomography instrument. PLoS One. 2010 Dec 17;5(12):e14348.

    [24] Bradu A, Ma L, Bloor JW, Podoleanu A. “Dual optical coherence tomography/fluorescence microscopy for monitoring of Drosophila melanogaster larval heart.” J Biophotonics. 2009 2(6-7):380-8.

    [25] M. A. Choma, M. J. Suter, B. J. Vakoc, and B. E. Bouma, Heart wall velocimetry and exogenous contrast-based cardiac flow imaging in Drosophila melanogaster using Doppler optical coherence tomography, Journal of Biomedical Optics, 15(5), 056020-1~056020-6, 2010.

    [26] M. T. Tsai, F. Y. Chang, C. K. Lee, T. T Chi, K. M. Yang, L. Y. Lin, J. T. Wu, C. C. Yang, Observations of cardiac beating behaviors of wild-type and mutant Drosophilae with optical coherence tomography,” J. Biophotonics. 2011 4(9):610-618.

    [27] De Boer, J.F., et al., Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Optics Letters, 2003. 28(21): p. 2067-2069.

    [28] Leitgeb, R., C. Hitzenberger, and A.F. Fercher, Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express, 2003. 11(8): p. 889¡V894.

    [29] Choma, M.A., et al., Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics Express, 2003. 11(18): p. 2183-2189.

    [30] Ehlers, M.R.W. and J.F. Riordan, Angiotensin-converting enzyme: new concepts concerning its biological role. Biochemistry, 1989. 28(13): p. 5311-5318.

    [31] STRITTMATTER, S.M. and S.H. SNYDER, Angiotensin-converting enzyme in the male rat reproductive system: autoradiographic visualization with [3H] captopril. Endocrinology, 1984. 115(6): p. 2332.

    [32] Yotsumoto, H., S. Sato, and M. Shibuya, Localization of angiotensin converting enzyme (dipeptidyl carboxypeptidase) in swine sperm by immufluorescence. Life sciences, 1984. 35(12): p. 1257-1261.

    [33] Lanzillo, J.J., et al., Angiotensin-converting enzyme from human tissues. Physicochemical, catalytic, and immunological properties. Journal of Biological Chemistry, 1985. 260(28): p. 14938.

    [34] Lamango, N. and R. Isaac, Metabolism of insect neuropeptides: properties of a membrane-bound endopeptidase from heads of Musca domestica. Insect biochemistry and molecular biology, 1993. 23(7): p. 801-808.

    [35] Cornell, M.J., et al., Cloning and expression of an evolutionary conserved single-domain angiotensin converting enzyme from Drosophila melanogaster. Journal of Biological Chemistry, 1995. 270(23): p. 13613.

    [36] Taylor, C.A.M., D. Coates, and A.D. Shirras, The Acer gene of Drosophila codes for an angiotensin-converting enzyme homologue. Gene, 1996. 181(1-2): p. 191-197.

    [37] Warner, F., et al., Whats new in the renin-angiotensin system?: Angiotensin-converting enzyme-2: a molecular and cellular perspective. Cellular and Molecular Life Sciences CMLS, 2004. 61(21): p. 2704-2713.

    [38] Zisman, L.S., ACE and ACE2: a tale of two enzymes. European heart journal, 2005. 26(4): p. 322.

    [39] Santos, R.A.S., Angiotensin-(1¡V7) is an endogenous ligand for the G protein-coupled receptor Mas. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(14): p. 8258.

    [40] Riordan, J.F., Angiotensin-I-converting enzyme and its relatives. Genome Biol, 2003. 4(8): p. 225.

    [41] Huber, R., et al., Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Optics Express, 2005. 13(9): p. 3513-3528.

    [42] Choma, M.A., K. Hsu, and J.A. Izatt, Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. Journal of Biomedical Optics, 2005. 10(4): p. -.

    [43] Huber, R., et al., Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Optics Express, 2005. 13(26): p. 10523-10538.

    [44] Liu, Y., Measurement of tissue optical properties during mechanical compression using swept source optical coherence tomography. 2009, Virginia Polytechnic Institute and State University.

    [45] Grady L. Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell. 2006;28(11):1768–83.

    [46] Grady, L. and G. Funka-Lea, Multi-label image segmentation for medical applications based on graph-theoretic electrical potentials. Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis, 2004: p. 230-245.

    [47] Curtis, N., J. Ringo, and H. Dowse, Morphology of the pupal heart, adult heart, and associated tissues in the fruit fly, Drosophila melanogaster. Journal of morphology, 1999. 240(3): p. 225-235.

    [48] T. W. Ridler and S. Calvard, “Picture thresholding using an iterative selection method”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-8, No. 8, 630-632, 1978.

    [49] Carhan, A., et al., Loss of Angiotensin-converting enzyme-related (ACER) peptidase disrupts night-time sleep in adult Drosophila melanogaster. Journal of Experimental Biology, 2011. 214(4): p. 680-686.

    [50] Wessells, R.J., E. Fitzgerald, J.R. Cypser, M. Tatar, and R. Bodmer. 2004. Insulin regulation of heart function in aging fruit flies. Nat. Genet. 36:1275-1281.

    無法下載圖示 本全文未授權公開
    QR CODE