研究生: |
黃玄智 Huang Hsuan Chih |
---|---|
論文名稱: |
柳亞胺基酸之釩氧錯合物的結構、光譜及催化性質研究 The study of structures, spectroscopy, and catalytic properties of salicylideneaminoacidatooxovandium complexes. |
指導教授: |
蘇展政
Su, Chan-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 釩氧金屬錯合物 、催化反應 、柳亞胺基酸 |
英文關鍵詞: | oxovanadium complexes, catalyst, shiff base |
論文種類: | 學術論文 |
相關次數: | 點閱:221 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對西符鹼配子釩氧錯合物之研究,在無機化學中一直是非常重要且熱門的研究主題之一,本實驗是以[X-sal-D-aminoacid]及[X-sal-L-aminoacid]為主要的配子,其中X-sal為柳醛(salicylaldehyde)、3-甲氧基柳醛(2-hydroxy-3-methoxyl-benzaldehyde)、5-硝基柳醛(2-hydroxy-5-nitro-benzaldehyde)及3,5-二異丁基柳醛(3,5-Di-tert-butyl-2-hydroxy-benzaldehyde),而胺基酸(aminoacid)為D-valine、L-valine、L-leucine、L-tert-leucine、L-threonine及L-Threonine methyl ester。目前已成功地合成出一系列釩氧錯合物:[VO(X-sal-L-val)(L)],[VO(X-sal-D-val)(L)],[VO(X-sal-L-leu)(L)],[VO(X-sal-L-thr)(L)],其中L=H2O,MeOH,EtOH。
利用元素分析,紅外線光譜,紫外光可見光光譜,電子順磁光譜,圓形二色光光譜及X-光結構解析方法完成釩氧錯合物的結構鑑定,並探討其鍵結性質。
目前已完成X-光單晶結構解析的釩氧錯合物有:
(1)[VO(sal-L-val)(μ-O)VO(sal-L-val)(H2O)]
斜方晶系(Hexagonal),空間群為P6,其晶格常數為:a =14.5156(7) Å,b =14.5156(7) Å,c =45.671(13) Å,V =8333.7 (8) Å3,Z =4,精算值為R =0.0824,Rw =0.1566。
(2)[VO(3-CH3O-sal-L-thr)(H2O)]2(μ-O)
斜方晶系(Orthorhombic),空間群為P21212,其晶格常數為:a =18.6587(16) Å,b =18.9119(16) Å,c =7.8027(7) Å,V =2753.4 Å3,Z =4,精算值為R =0.0694,Rw =0.1386。
再利用這些釩氧錯合物具不對稱結構的性質,作為不對稱催化硫氧化反應及環氧化反應的催化劑(反應式如下),本研究首先利用圓形二色光光譜以及紫外光可見光光譜來鑑定硫氧化產物苯甲亞(phenyl methyl sulfoxide)的ee值,這是一個簡單且快速的鑑定方式,可以簡化結果分析的步驟。
由實驗的結果發現,這類釩氧錯合物都具有催化能力;在硫氧化反應時,L-form的胺基酸導致(S)-phenyl methyl sulfoxide的產物,而D-form的胺基酸產生(R)-phenyl methyl sulfoxide的結果,其中以立體障礙較大的[VO(3,5di-t-butyl-sal-L-thr)(L)]及[VO(3,5di-t-butyl-sal-D-val)(L)]錯合物為催化劑,得到不錯的選擇性(ee值>50﹪)。也發現利用具拉電子基[VO(5-nitro-sal-L-val)(L)]為催化劑時,選擇性亦有明顯的提昇。
The study of vanadium complexes is an important topic in inorganic chemistry and industrial applications. Chiral oxovanadium complexes of the types, [VO(X-sal-D-aminoacid)(L)] and VO(X-sal-L-aminoacid)(L)], have been sythesized, where X-sal-aminoacid stands for Schiff base type condensation products of salicylaldehyde and its 3-methoxy, 5-nitro, and 3,5-di-tert-butyl derivatives, with aminoacids, which include D-valine, L-valine, L-leucine, L-tert-leucine, L-theronine and L-theronine methyl ester, and L represents H2O, CH3OH and C2H5OH. These complexes have been characterized by elemental analysis, IR, UV/VIS, CD and EPR spectroscopic measurements. Studies by X-ray structure determined and CV are also performed.
By using three-dimensional X-ray diffraction methods, the crystals and molecular structures of the following two complexes have been determined:
(1)[VO(sal-L-val)(μ-O)VO(sal-L-val)(H2O)]
Hexagonal, space group P6, a = 14.5156(7) Å, b = 14.5156(7) Å, c = 45.671(13) Å, V = 8333.7 (8) Å3, Z = 4, R = 0.0824, Rw = 0.1566.
(2)[VO(3-CH3O-sal-L-thr)(H2O)]2(μ-O)
Orthorhombic, space group P21212, a = 18.6587(16) Å, b = 18.9119(16) Å, c = 7.8027(7) Å, V = 2753.4 Å3, Z = 4, R = 0.0694, Rw = 0.1386.
These chiral oxovanadium complexes are utilized in asymmetric sulfoxidation and epoxidation reactions, as shown below. In this studies, we use CD and UV/VIS spectroscopy to determine ee values. This is an efficient determined ee values. In sulfoxidation, the products formed contain mainly (S)-phenyl methyl sulfoxide, while using catalysts having L-aminoacids; and (R)-phenyl methyl sulfoxide is predominant by using catalysts with D-aminoacid. Both [VO(3,5di-t-butyl-sal-L-thr)(L)] and [VO(3,5di-t-butyl-sal-D-val)(L)] result in high yields and enantioselectivites up to 50% ee. A significant improvement in the enantioselectivity was observed while using [VO(5-nitro-sal-L-val)(L)] catalyst.
These vanadium complexes are formed to be poor in epoxidation of allylic alcohols.
1. Butler, A.; Carrano, C. J. Coord. Chem. Rev. 1991, 109, 61.
2. Rehder, D. Angew. Chem., Int. Ed. Engl. 1991, 30, 148.
3. Crans, D. C. Comments Inorg. Chem. 1994, 16, 1.
4. Butler, A.; Walker, J. V. Chem. Rev. 1993, 93, 1937.
5. Morningstar, J. E.; Johnson, M. K.; Case, E. E.; Hales, B. J. Biochemistry 1987, 26, 1795.
6. Schechter, Y.; Karlish, S. J. D. Nature 1980, 284, 556.
7. McNeill, J. H.; Yuen, V. G.; Hoveyda, H. R.; Orvig. C. J. Med. Chem. 1992, 35, 1489.
8. Crans, D. C.; Mahroof-Tahir, M.; Shin, P. K.; Keramidas, A. D. Mol. Cell. Biochem. 1995, 153, 17.
9. Shechter, Y. Diabetes 1990, 39, 1.
10. Denu, J. M.; Lohse, D. L.; Vijayalakshmi, J.; Saper, M. A.; Dixon, J. E. Proc. Natl. Acad. Sci. USA 1996, 93, 2493.
11. Nakajima, K.; Kojima, K.; Kojuma, M.; Fujita, J. Bull. Chem. Soc. Jpn. 1990, 63, 2620.
12. Nakajima, K.; Kojima, K.; Toriumi, K.; Fujita, J. Bull. Chem. Soc. Jpn. 1989, 62, 760.
13. Bolm, C.; Bienewald, F. Angew. Chem. Int. Ed. Engl. 1995, 34, 2640.
14. Brink, H-B.; Tuynman, A.; Dekker, H-L.; Hemrika, W.;Izumi, Y.; Oshiro, T.; Schoemaker, H-E.; Wever, R. Inorg. Chem. 1998, 37, 6780.
15. Andersson, M.; Willetts, A.; Allenmark, S. J. Org. Chem. 1997, 62, 8455.
16. Mimoun, H.; Chaumette, P.; Mignard, M.; Saussine, L.; Nouveau. Journal De Chimine. 1983, 7, 467.
17. K. B. Sharpless, R. C. Michaelson, J. Am. Chem. Soc. 1977, 99, 1990.
18. Schiff, H. Ann. Suppl. 1864, 3, 343
19. Collins, S. R.; Fenton, D. E. Coord. Chem. Rev., 1996, 148, 19.
20. Clague, M. J.; Keder, N. L.; Butler, A. Inorg. Chem. 1993, 32, 4754.
21. Colpas, G. J.; Hamstra, B. J.; Kampf, J. W.; Pecoraro, V. L. J. Am. Chem. Soc. 1996, 118, 3469.
22. Hamstra, B. J.;Houseman, A-L. P.; Colpas, G. J.; Kampf, J. W.; LoBrutto, R.; Frasch, W. D.; Pecoraro, V. L. Inorg. Chem. 1997, 36, 4866.
23. Everett, R. R.; Butler, A. Inorg. Chem. 1989, 28, 395.
24. Colpas, G. J.; Hamstra, B. J.; Kampf, J. W.; Pecoraro, V. L. J. Am. Chem. Soc. 1994, 116, 3627.
25. Alexander, H. V.; Albrecht, B. Tetrahedron Lett. 1998, 39, 1741.
26. Cogan, D.; Liu, G.; Kim, K.; Backes, J. B.; Ellman, J. A. J. Am. Chem. Soc. 1998, 120, 8011.
27. 施佩汝,國立台灣師範大學碩士論文,1999
28. Cavaco, I.; Pessoa, J. C.; Costa, D.; Duarte, M. T.; Gillard, R. D.; Matias, P. J. Chem. Soc., Dalton Trans., 1994, 149.
29. Pessoa, J. C.; Duarte, M. T.; Gillard, R. D.; Madeira, C.; Matias, P.; Tomaz, I. J. Chem. Soc., Dalton Trans., 1998, 4015.
30. Theriot, L. J.; Carlisle, G. O.; Hu, H. J. J. Inorg. Nucl. Chem. 1969, 31, 3303.
31. Dutta, S.; Mondal, S.; Chakravorty, A. Polyhedron, 1995, 14, 1163.
32. Carrano, C. J.; Nuun, C. M.; Quan, R.; Bonadies, J. A.; Pecoraro, V. L. Inorg. Chem. 1990, 29, 944.
33. Vergopoulos, J.; Priebsch, W.; Fritzsche, M.; Rehder, D. Inorg. Chem. 1993, 32, 1884.
34. Dutta, S. K.; Kumar, S. B.; Bhattacharyya, S.; Tiekink, E. R. T.;Chaudhury, M. Inorg. Chem. 1997, 36, 4954.
35. Dutta, S. K.; Samanta, S.; Kumar, S. B.; Han, O. H.; Burckel, P.; Pinkerton, A. A.; Chaudhury, M. Inorg. Chem. 1999, 38, 1982.
36. Mondal, S.;Ghosh, P.; Chakravorty, A. Inorg. Chem. 1997, 36, 59.
37. Percy, G. C. J. Inorg. Nucl. Chem. 1975, 32, 2071.
38. Basu,P.; Pal, S.; Chakravorty, A. J. Chem. Soc., Dalton Trans. 1991, 3217.
39. Basu,P.; Pal, S.; Chakravorty, A. J. Chem. Soc., Dalton Trans. 1991, 3217.
40. Hausan, C. R.; Kabanos, T. A.; Keramidas, A. D.; Mentzafos, D.; Terzis, A. Inorg. Chem. 1992, 31, 2857.
41. Cornman, C. R.; Kamrf, J.; Lah, M. S.; Pecoraro, V. L. Inorg. Chem. 1992, 31, 2035.
42. Ballhausen, C. J.; Gray, H. B. Inorg. Chem. 1962, 1, 111.
43. Zah-Letho, J.; Samuel, E.; Livage, J. Inorg. Chem. 1988, 27, 2233.
44. Basu, P.; Pal, S.; Chakravorty, A. J. Chem. Soc., Dalton Trans. 1991, 3217.
45. Hausan, C. R.; Kabanos, T. A.; Keramidas, A. D.; Mentzafos, D.; Terzis, A. Inorg. Chem. 1992, 31, 2857.
46. Cornman, C. R.; Kamrf, J.; Lah, M. S.; Pecoraro, V. L. Inorg. Chem. 1992, 31, 2035.
47. Schula, D.; Weyhermuller, T.; Wieghardt, K.; Nuber, B. Inorg. Chim. Acta 1995, 240, 217.
48. Jacobus, J.; Mislow, K.; J. Am. Chem. Soc. 1967, 89, 5228.