簡易檢索 / 詳目顯示

研究生: 黃靖羽
Huang, Jing-Yu
論文名稱: 局域性銀奈米粒子表面電漿共振硒硫化鎘/硫化鋅產生隨機雷射之研究
Plasmonically induced coherent and polarized random laser emissions in colloidal CdSe/ZnS quantum dots with ellipsoidal Ag nanoparticles
指導教授: 李亞儒
Lee, Ya-Ju
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 46
中文關鍵詞: 同調隨機雷射局域性表面電漿共振膠狀量子點偏振發光
英文關鍵詞: Coherent Random Laser, Localized Surface Plasmon Resonance, Colloidal Quantum Dots, Polarized Emissions
DOI URL: https://doi.org/10.6345/NTNU202204152
論文種類: 學術論文
相關次數: 點閱:138下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討藉由調控輻射發光電場震盪方向與橢圓銀奈米粒子局域性表面電漿共振(localized surface plasmon, LSP)間的耦合強度,來達到具有高同調性(coherent)與高光學異象性(optical anisotropy)的硒化鎘/硫化鋅(CdSe/ZnS)膠狀量子點(colloidal quantum dots, CQDs)隨機雷射 (random laser)。迥異於傳統CdSe/ZnS CQDs只能觀察到放大自發輻射(amplified spontaneous emission, ASE),我們所提出的隨機雷射結構其雷射出射光譜展現清楚的干涉特性(spectral spikes)以及較低的雷射閥值特性(low threshold pumping power)—主要歸因於橢圓銀奈米粒子周圍因LSP共振效應所誘發出高光散射(optical scattering)以及高光增益(optical gain)等特性。更重要的是,我們發現硒化鎘/硫化鋅量子點其輻射發光電場震盪方向與橢圓銀奈米粒子主軸之相對位置,可以選擇性地激發LSP 共振,此對於隨機雷射之特定光學極化輸出,佔有極重要角色。我們也進一步的使用時域有限差分法(Finite-Difference Time-Domain, FDTD)來探討與驗證CdSe/ZnS CQDs輻射發光之電場震盪方向與橢圓銀奈米粒子主軸間的相互物理關係。最後,藉由旋轉塗布與控制銀奈米粒子的幾何形狀,我們即能同時達成局域性表面電漿共振與硒化鎘/硫化鋅膠狀量子點輻射發光在空間中與在光譜上的高重合度。這也說明了本論文所提出的架構,是個簡單、可行但同時具有高前瞻性。其可以克服傳統量子點因歐傑復合(Auger Recombination)效應不易產生誘發輻射的缺點,進而實現以量子點為基礎之具有高同調性、低閥值特性以及特定光學極化的新穎隨機雷射。

    We demonstrate the capability of controlling the optical anisotropy of lasing emissions by manipulating the coupling strength between the oscillating electric field of emitted light and the localized surface plasmon (LSP) resonance in a random lasing medium composed of colloidal CdSe/ZnS quantum dots (QDs) and ellipsoidal silver nanoparticles (Ag NPs). Distinctive from the amplified spontaneous emission (ASE) generally observed on the colloidal CdSe/ZnS QDs, it is found that lasing emissions of the revealed system exhibits clear interference features (coherent optical feedbacks) with low-threshold characteristics, mainly attributed to enhanced light scatterings and optical gains arisen in the peripheral surfaces of ellipsoidal Ag NPs. Importantly, the relative orientation, between the oscillating electric field of emitted light from colloidal CdSe/ZnS QDs and the major axis of ellipsoidal Ag NPs, plays a critical role in selective excitation of LSP resonances to promote laser emissions with specific optical polarizations. That is further examined and verified by the finite-difference time-domain (FDTD) simulation. The unique and manipulating properties, associated with the LSP resonance coupling effect of ellipsoidal Ag NPs, make the present system as promising candidates for achieving coherent and polarized lasing emissions based on the colloidal semiconductor quantum dots.

    致謝 i 中文摘要 ii Abstract iv 目錄 v 圖目錄 vii 第一章 序論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 4 第二章 實驗原理 6 2.1 雷射基本原理 6 2.1.1傳統雷射原理 6 2.1.2 隨機雷射原理 7 2.2 量子點的特性與原理 9 2.3 光激發螢光發光原理 11 2.4 射頻磁控濺鍍原理 12 2.5 快速熱退火原理 15 2.6 掃描式電子顯微鏡 16 第三章 實驗流程與設備 20 3.1 樣品製作流程 20 3.2 濺鍍系統 21 3.3 快速熱退火 22 3.4 量測系統 23 第四章 結果與討論 25 4.1 CdSe/ZnS量子點的吸收與螢光光譜 25 4.2 銀奈米粒子的吸收光譜與掃描式電子顯微鏡 27 4.3放大自發輻射光譜 29 4.4淨模增益 30 4.5同調隨機雷射 31 4.6臨界增益 32 4.7隨機雷射光譜的演變 33 4.8共振腔長度與平均自由徑 34 4.9時間解析光激螢光量測 36 4.10有偏振的隨機雷射 39 4.11對銀奈米粒子進行時域有限差分法模擬 40 第五章 結論 43 第六章 參考文獻 44

    [1] M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Applied physics Letters 97, 151109 (2010).
    [2] X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
    [3] N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
    [4] H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder, ” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
    [5] R. C. Polson, A. Chipouline, and Z. V. Vardeny, “Random lasing in π-conjugated films and infiltrated opals,” Adv. Mater. 13(10), 760–764 (2001).
    [6] F. Luan, B. Gu, A. S. L. Gomes, K. T. Yong, S. Wen, and P. N. Prasad, “Lasing in nanocomposite random media,” Nano Today 10(2), 168–192 (2015).
    [7] H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
    [8] A. Tulek, R. C. Polson, and Z. V. Vardeny, “Naturally occurring resonators in random lasing of π-conjugated polymer films,” Nat. Phys. 6(4), 303–310 (2010).
    [9] Diederik S. Wiersma, “The physics and applications of random lasers, ” Nature Physics 4, 359 - 367 (2008)
    [10] S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2(7), 429–432 (2008).
    [11] V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000).
    [12] Yujie Chen, Johannes Herrnsdorf, Benoit Guilhabert, Yanfeng Zhang, Ian M. Watson, Erdan Gu, Nicolas Laurand, and Martin D. Dawson, “ Colloidal quantum dot random laser, ” Optics Express, Vol. 19, Issue 4, pp, 2996-3003 (2011)
    [13] Cao M, Zhang Y, Song X, Che Y, Zhang H, Dai H, Zhang G, Yao J, “Random lasing in a colloidal quantum dot-doped disordered polymer, ” Optics Express, Vol. 24, No. 9 (2016)
    [14] 楊寶賡, “雷射工程, ” 新文京開發, 第32-40頁
    [15] http://www.lasertech.tw/index.php
    [16] 郭家豪。2009。可雙光子調控隨機雷射於染料擦摻雜聚合物分散奈米液晶顆粒混合薄膜。成功大學物理研究所碩論。台南。
    [17] L. E. Brus, “Chemistry and physics of semiconductor nanocrystals, ” (2007)
    [18] Norris, D.J. (1995). “Measurement and Assignment of the Size-Dependent Optical Spectrum in Cadmium Selenide (CdSe) Quantum Dots, ” PhD thesis, MIT".
    [19] C. B. Murray and C. R. Kagan, "Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, ” Annual Review of Materials Research, Vol. 30, 545-610, (2000)
    [20] SIGMA-ALDRICH official web: http://www.sigmaaldrich.com/materialsscience/nanomaterials/quantum-dots.html#ref
    [21] Patrícia Maria Simões Martins, “ANÁLISE DE MERCADO DE EQUIPAMENTOS CIENTÍFICOS NA ÁREA BIOMÉDICA” Mestrado Integrado em Engenharia Biomédica Coimbra, Setembro (2009)
    [22] M. A. Kastner, “Artificial Atoms, ” Physics Today, Vol. 46, 24 (1993)
    [23] R. C. Ashoori, “Electrons in artificial atoms, ” Nature, 379, 413 - 419 (1996)
    [24] C. P. Collier, T. Vossmeyer, and J. R. Heath, “Nanocrystal superlattices, ” Annual Review of Physical Chemistry, Vol. 49: 371-404 (1998)
    [25] “Nanotechnology Information Center: Properties, Applications, Research, and Safety Guidelines, ” American Elements.
    [26] S. M. Reimann and M. Manninen, “Electronic structure of quantum dots, ” Reviews of Modern Physics, vol. 74 (2002)
    [27] M G Bawendi, M L Steigerwald, and L E Brus, “The Quantum Mechanics of Larger Semiconductor Clusters, ” Annual Review of Physical Chemistry, vol. 41, 477-496, (1990)
    [28] 謝嘉民, 賴一凡, 林永昌, 枋志堯, “光激發螢光量測的原理、架構及應用, ”奈米通訊, 第十二卷, 第二期, 第28-39頁 (2005)
    [29] Bernard Valeur, Maro Nuno Berberan-Sants, “Molecular Fluorescence: Principles and Applications” .
    [30] http://cnx.org/content/m34656/latest/Object%2013c.jpg
    [31] Rigaku Mechatronics Co. /Applications/Sputtering systems, 2011/07/09.
    [32] Fred RooZeboom, “Rapid thermal and other short-time processing technologies,” (2000).
    [33] David Hodul, Jeffrey C. Gelpey, Martin L. Green, Thomas E. Seidel, Thermal Annealing/Chemical Vapor Deposition and Integrated Processing, (Cambridge University Press, 2014)
    [34] Ludwing Reimer, “Scanning electron microscopy: physics of image formation and microanalysis,” (1998)
    [35] Anjam Khursheed, “ Scanning electron microscope optics and spectrometers,” (2011)
    [36] 林聖凱。2005。以微波電漿火炬製備可見光化光觸媒之研究。中原大學化學工程系碩士論文。桃園。
    [37] 陳義信。2001。冷壁式有機金屬化學氣相沈積法製備二氧化銥薄膜及其特性分析。國立台灣科技大學工程技術研究所碩士論文。台北。
    [38] 趙國興, 雷射拉曼光譜對鈀、銠與硫酸鈰反應之研究。中國文化大學應用化學研究所論文, 台北 (2002)
    [39] 黃惠忠。2004。奈米材料分析。滄海書局。台中。

    無法下載圖示 本全文未授權公開
    QR CODE