簡易檢索 / 詳目顯示

研究生: 韋怡安
Wei, Yi-An
論文名稱: 發展利用非金屬材料之THz波前與振幅調製技術
Development of Terahertz Wavefront and Amplitude Modulation Techniques Using Non-Metallic Materials
指導教授: 楊承山
Yang, Chan-Shan
口試委員: 李晁逵
Lee, Chao-Kuei
程金保
Cheng, Chin-Pao
鄧敦建
Teng, Tun-Chien
張存續
Chang, Tsun-Hsu
陸亭樺
Lu, Ting-Hua
口試日期: 2024/03/14
學位類別: 博士
Doctor
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 111
中文關鍵詞: 太赫茲調製器3D列印高分子複合材料漩渦光束螺旋相位板超穎介面PB phase連續體束縛態全介電質磁流體
英文關鍵詞: Terahertz, Modulator, 3D Printing, Polymer Composite Materials, Vortex Beam, Spiral Phase Plate, Metasurface, Pancharatnam-Berry (PB) phase, Bound States in the Continuum, All-Dielectric, Ferrofluid
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202400465
論文種類: 學術論文
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太赫茲輻射具有眾多獨特的特性,包括光子能量低、對金屬的高反射性、對水表現出強烈的吸收,以及對大多數介電材料表現出極高的穿透性。這些特性賦予太赫茲輻射在多個研究領域中的優越性。太赫茲輻射可提供有關分子之間低頻震動模式、氣體的旋轉模式和晶格內聲子模式等分子訊息,進而使太赫茲的吸收頻譜能夠清晰地分析同分異構物的組成模式。因此,太赫茲輻射在各種研究和實際應用中得到廣泛應用。然而,由於太赫茲波段相關設備仍相對缺乏,因此低耗損且高效的元件變得尤為重要。為了解決這一問題,本研究針對波前和振幅的調製分別使用了不同的方法。
    在波前的調製方面,採用了三種主要方法,包括透鏡、螺旋相位板以及超穎介面。透鏡利用造鏡者公式並搭配3D列印技術,透過常見3D列印材料的改良,最後所選用的材料為光固化樹脂混合30%的Al2O3,成功地製造耗損較小的太赫茲元件並有效的降低製造成本,可應用於多種系統架設及應用。隨著未來6G通訊波段提供更高速度、更大容量和極低延遲的可能性,相關研究正積極進行。在這方面,具有軌道角動量的螺旋光束展現出相當大的應用潛力。螺旋光束的拓樸數可以是任意整數,且不同拓樸數的螺旋光束呈現正交性,適用於增加通訊通道。因此要能產生這種具有軌道角動量的螺旋光束就非常重要,本研究利用了兩種方式來實現,分別是螺旋相位板以及超穎介面。螺旋相位板利用3D列印方式製造,所選用的材料與製作透鏡時相同,形成可以隨著空間旋轉的螺旋階梯狀結構,進而產生相位隨著空間旋轉的環形光斑。而超穎介面則利用表面電漿共振及Pancharatnam-Berry (PB) phase的原理,設計出漏斗結構的超穎表面,達到空間上不同相位分佈的狀態,進而實現螺旋狀的波前。
    在振幅的調製方面,有兩種主要方法。首先,利用磁流體其優異的磁致特性進行調製。這種方式在施加弱磁場時,磁流體中的奈米粒子會排列成鏈狀分布。透過調整磁場大小,使得鏈狀結構的緊密程度發生變化,當鏈狀之間的間距與入射光達到共振時,即實現了振幅的調製效果。其次,受到磁流體和3D列印技術的啟發,提出了第二種方式。這種方法將鏈狀結構類比為一維光子晶體,類似光柵結構。由於太赫茲對於許多介電材料有著高穿透的特性,通過適當設計結構尺寸並搭配合適材料,使其能與入射光產生高品質因子的共振。因此這種方法可以成為一種設計簡單、製程單純的元件製作方式,並在振幅的調製方面發揮作用。
    總而言之,這項研究不僅探討了太赫茲調製器在波前和振幅方面的特性與設計,更成功地實際製作出符合成品來匹配模擬結果。這一系列有效的調製方法為太赫茲技術的發展和應用開啟了嶄新的前景。

    Terahertz (THz) radiation possesses numerous distinctive characteristics, including low photon energy, high reflectivity to metals, strong absorption in water, and exceptionally high penetration through most dielectric materials. These attributes confer superior advantages to THz radiation in various research domains. THz radiation offers valuable insights into low-frequency vibrational modes between molecules, rotational modes of gases, and phonon modes within crystal lattices, enabling clear analysis of composition patterns among isomeric substances through absorption spectra. Consequently, THz radiation finds widespread applications in diverse research and practical scenarios. However, due to the relative scarcity of THz band-related devices, components with low loss and high efficiency become particularly crucial. Addressing this challenge, our study employs distinct methods for modulation in both wavefront and amplitude.
    In the realm of wavefront modulation, three primary approaches are employed: lenses, spiral phase plates, and superluminal interfaces. Lenses, utilizing the Fresnel formula coupled with 3D printing technology, are crafted from a light-curing resin blended with 30% Al2O3. This material choice minimizes THz component losses and effectively reduces manufacturing costs, rendering it applicable to various system setups and applications. As the future unfolds with the promise of higher speeds, larger capacities, and extremely low latency in 6G communication bands, research in this area is actively progressing. In this context, vortex beams of light carrying orbital angular momentum exhibit significant application potential. The spectrum numbers of vortex beams can be arbitrary integers, and those with different spectrum numbers exhibit orthogonality, suitable for enhancing communication channels. Thus, the generation of these vortex beams with orbital angular momentum is crucial, and our study employs two methods to achieve this: spiral phase plates and metasurface. Spiral phase plates, manufactured through 3D printing using the same material as the lenses, form a helical step-like structure that rotates in space, generating a circular light spot with a phase that varies spatially. Metasurface, utilizing the principles of surface plasmon resonance and Pancharatnam-Berry (PB) phase, design funnel-shaped superluminal surfaces, achieving different spatial phase distributions and realizing spiral wavefronts.
    In amplitude modulation, two main methods are employed. Firstly, modulation using magnetic fluids takes advantage of their excellent magneto-optical characteristics. When subjected to a weak magnetic field, nanoparticles in the magnetic fluid align into chain-like distributions. Adjusting the magnetic field size changes the tightness of the chain-like structure. When the spacing between the chains resonates with incident light, amplitude modulation is achieved. Secondly, inspired by magnetic fluids and 3D printing technology, we propose another method. This approach analogizes the chain-like structure to a one-dimensional photonic crystal, similar to a grating structure. Because THz radiation has high penetration through many dielectric materials, resonance can be achieved by appropriately designing structure dimensions and using suitable materials. Therefore, this method can serve as a straightforward and efficient way to produce components, playing a role in amplitude modulation.
    In summary, our study not only delves into the characteristics of THz modulators in terms of wavefront and amplitude but also proposes a series of effective modulation methods, opening up new prospects for the development and application of THz technology.

    致謝 i 中文摘要 iii Abstract v 目錄 vii 圖目錄 ix 表目錄 xiv 第一章 緒論 1 1. 1 前言 1 1. 2 文獻回顧 2 1. 2. 1 太赫茲 2 1. 2. 2 用於波前控制的方式 3 1. 2. 3 基於介電質材料的共振效應 11 1. 3 本論文組織 18 第二章 實驗架設與分析方法 20 2. 1 透鏡量測系統 20 2. 2 雷射系統 20 2. 3 THz產生機制與THz時域光譜系統架設 21 2. 4 THz-TDS 取得厚樣品的光學常數 27 第三章 用於調製波前的方法 29 3. 1 基於3D列印技術印製光學透鏡 29 3. 1. 1 前言 29 3. 1. 2 有效介質近似理論 30 3. 1. 3 樣品製備 31 3. 1. 4 材料分析 33 3. 1. 5 透鏡設計 49 3. 1. 6 量測結果 51 3. 1. 7 結論 54 3. 2 基於螺旋相位板之THz漩渦光束產生器 56 3. 2. 1 螺旋相位板 56 3. 2. 2 螺旋相位板設計 56 3. 2. 3 模擬結果 57 3. 2. 4 結論 58 3. 3 基於超穎介面之THz漩渦光束產生器 58 3. 3. 1 超穎介面簡介 58 3. 3. 2 表面電漿共振 61 3. 3. 3 Pancharatnam-Berry(PB)相位 62 3. 3. 4 超穎介面設計與模擬 64 3. 3. 5 結論 66 第四章 用於調製振幅的方法 67 4. 1 基於光柵結構連續體束縛態之行為 67 4. 1. 1 前言 67 4. 1. 2 有限元素法 67 4. 1. 3 連續體束縛態(Bound State in the Continuum) 68 4. 1. 4 光子晶體 73 4. 1. 5 品質因子、靈敏度、品質因數 74 4. 1. 6 結構設計與模擬 76 4. 1. 7 樣品製備 86 4. 1. 8 量測結果 89 4. 1. 9 結論 91 4. 2 磁流體中鏈狀結構可調控THz米式共振效應 92 4. 2. 1 前言 92 4. 2. 2 磁光效應 92 4. 2. 3 樣品製備及樣品台設計 93 4. 2. 4 量測結果 95 4. 2. 5 結論 98 第五章 結論與未來展望 99 參考文獻 103

    C. Liu, L. Wang, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, Z. Huang, W. Zhou, W. Tang, G. Xu, S.-W. Wang, and W. Lu, “Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection.” Carbon, 130, 233-240(2018).
    Y. H. Wang, K. J. Huang, and X. Wu, “Recent advances in transition-metal dichalcogenides based electrochemical biosensors: A review.” Biosensors and Bioelectronics, 97, 305-316(2017).
    N. Palka, “Identification of concealed materials, including explosives, by terahertz reflection spectroscopy.” Opt. Eng., 53(3), 031202-031202(2014).
    J. El Haddad, B. Bousquet, L. Canioni and P. Mounaix, “Review in terahertz spectral analysis.” TrAC Trends in Analytical Chemistry, 44, 98-105(2013).
    A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs.” Materials today, 11(3), 12-26(2008).
    H. J. Shin, S. W. Choi, and G. Ok, “Qualitative identification of food materials by complex refractive index mapping in the terahertz range.” Food chemistry, 245, 282-288(2018).
    A. Gong, Y. Qiu, X. Chen, Z. Zhao, L. Xia and Y. Shao, “Biomedical applications of terahertz technology.” Applied Spectroscopy Reviews, 55(5), 418-438(2020).
    P. H. Siegel, “Terahertz technology in biology and medicine.” IEEE transactions on microwave theory and techniques, 52(10), 2438-2447(2004).
    G. Gallot, “Terahertz sensing in biology and medicine.” Photoniques, 101, 53-58(2020).
    H. J. Song, and T. Nagatsuma, “Present and future of terahertz communications.” IEEE transactions on terahertz science and technology, 1(1), 256-263(2011).
    H. Elayan, O. Amin, R. M. Shubair, and M. Alouini, “Terahertz communication: The opportunities of wireless technology beyond 5G.” 2018 International Conference on Advanced Communication Technologies and Networking (CommNet), IEEE, (2018).
    D. H. Auston, K. P. Cheung, and P. R. Smith. “Picosecond photoconducting Hertzian dipoles.” Appl. Phys. Lett., 45(3), 284-286 (1984).
    B. Scherger, N. Born, C. Jansen, S. Schumann, M. Koch, and K. Wiesauer, “Compression molded terahertz transmission blaze-grating.” IEEE Trans. THz Sci. Tech. 2(5), 556-561(2012).
    S. F. Busch, N. Born, M. Koch, and B. Fischer, “Terahertz reflection gratings made by room-temperature high-pressure molding.” J Infrared Millim Terahz Waves, 34, 413-415(2013).
    S. F. Busch, M. Weidenbach, J. C. Balzer and M. Koch, “THz optics 3D printed with TOPAS.” J Infrared Millim Terahz Waves, 37(4), 303–307(2015).
    M. S. Heimbeck, P. J. Reardon, J. Callahan, and H. O. Everitt, “Transmissive quasi-optical Ronchi phase grating for terahertz frequencies.” Opt. Lett, 35(21), 3658-3660(2010).
    A. Siemion, A Siemion, M. Makowski, J. Suszek, J. Bomba, A. Czerwiński, F. Garet, J. Coutaz, and M. Sypek. “Diffractive paper lens for terahertz optics,” Opt. Lett, 37(20), 4320-4322(2012).
    M. Sypek, M. Makowski, E. Hérault, A. Siemion, J. Suszek, F. Garet, and J. Coutaz, “Highly efficient broadband double-sided Fresnel lens for THz range,” Opt. Lett, 37(12), 2214-2216(2012).
    L. Minkevicius, S. Indrisiunas, R. Sniaukas, B. Voisiat, V. Janonis, V. Tamosiunas, I. Kasalynas, G. Raciukaitis, G. Valusis, “Terahertz multilevel phase Fresnel lenses fabricated by laser patterning of silicon,” Opt. Lett., 42(10), 1875-1878 (2017).
    D. R. Reid, and G. S. Smith, “A full electromagnetic analysis of grooved-dielectric Fresnel zone plate antennas for microwave and millimeter-wave applications,” IEEE T. Antenn Propag., 55(8), 2138-2146(2007).
    J. M. Rodriguez, and H. D. Hristov, “Fresnel zone plate and ordinary lens antennas: comparative study at microwave and terahertz frequencies,” Microwave Conference. IEEE, 894-897(2011).
    L Minkevičius, B Voisiat, A Mekys, R. Venckevičius, I. Kašalynas, D. Seliuta, G. Valušis, G. Račiukaitis, V. Tamošiu¯nas, “Terahertz zone plates with integrated laser-ablated bandpass filters,” Electron. Lett, 49(1), 49-50(2013).
    J. He, T. Dong, B. Chi, and Y. Zhang, “Metasurfaces for terahertz wavefront modulation: a review.” Journal of Infrared, Millimeter, and Terahertz Waves, 41(6), 607-631(2020).
    D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett, 84(18), 4184-4187 (2000).
    J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Techn, 47(11), 2075-2084(1999).
    J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature, 455(7211), 376-379 (2008).
    V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett, 30(24), 3356-3358 (2005).
    R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, 292(5514), 77–79(2001).
    F. I. Baida, et. al. “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B, 84(3), (2011).
    P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht and D. W. Pohl, “Resonant optical antennas,” Science, 308(5728), 1607-1609(2005).
    M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics, 3(3), 152-156 (2009).
    I. I. Smolyaninov, Y. J. Hung, and C. C. Davis “Magnifying superlens in the visible frequency range," Science, 315(5819), 1699-1701 (2007).
    Q. Cheng, M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, “Broadband achromatic metalens in terahertz regime.” Sci. Bull., 64(20), 1525-1531(2019).
    N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science, 308(5721), 534-537(2005).
    M. Alibakhshikenari, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, and E. Limiti, “High performance on-chip array antenna bsed on metasurface feeding structure for terahertz integrated circuits.” 44th International Conference on Infrared, Millimeter, and Terahertz Waves, IEEE, Paris, France, (2019)
    W. D. Furlan, V. Ferrando, J. A. Monsoriu, P. Zagrajek, E. Czerwińska, and M. Szustakowski, “3D printed diffractive terahertz lenses.” Optics letters, 41(8), 1748-1751(2016).
    A. D. Squires, E. Constable, and R. A. Lewis, “3D printed terahertz diffraction gratings and lenses.” Journal of infrared, millimeter, and terahertz waves, 36, 72-80(2015)
    G. B. Wu, Y. S. Zeng, K. F. Chan, and S. W. Qu, “3-D printed circularly polarized modified Fresnel lens operating at terahertz frequencies.” IEEE Transactions on Antennas and Propagation, 67(7), 4429-4437(2019).
    S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst and M. Koch, “Optical Properties of 3D Printable Plastics in the THz Regime and their Application for 3D Printed THz Optics,” Journal of Infrared, Millimeter, and Terahertz Waves, 35, 993-997(2014).
    H. Y. Peng, C. S. Yang, Y. A. Wei, Y. C. Ruan, Y. C. Hsu, C. F. Hsieh, and C. P. Cheng, “Terahertz complex refractive index properties of acrylonitrile butadiene styrene with rice husk ash and its possible applications in 3D printing techniques,” Opt. Mater. Express, 11(9), 2777-2786(2021).
    H. Y. Peng, Y. A. Wei, Y. C. Hsu, K. C. Lin, P. Y. Yeh, C. S. Yang, and C. P. Cheng, “Complex optical properties of polymeric composite materials mixed with quartz powder and investigated by THz time-domain spectroscopy.” Opt. Mater. Express, 12(1), 22-33(2022).
    H. Y. Peng, Y. A. Wei, K. C. Lin, S. F. Hsu, J. C. Chen, C. P. Cheng, and C. S. Yang, “Terahertz characterization of functional composite material based on ABS mixed with ceramic powder.” Opt. Mater, Express, 13(9), 2622-2632(2023).
    Y. A. Wei, H. Y. Peng, B. C. Peng, X. M. Weng, J. T. Hsieh, C. P. Cheng, and C. S. Yang, “Ceramic powder mixed photopolymer 3D printing lens in the terahertz frequency range.” Opt. Express, in preparation (2024)
    K. Wang, and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires.” JOSA, B, 22(9), 2001-2008(2005).
    K. Wang, and D. M. Mittleman, “Metal wires for terahertz wave guiding.” Nature, 432(7015), 376-379(2004).
    A. Argyros, “Microstructures in polymer fibres for optical fibres, THz waveguides, and fibre-based metamaterials.” Int. Sch. Res. Notices, (2013).
    B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding.” Opt. Express, 19(26), B848-B861(2011).
    A. L. S. Cruz, A. C. C. Migliano, and M. A. R. Franco, “Polymer optical fibers for Terahertz: Low loss propagation and high evanescent field.” 2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC), IEEE, (2013).
    M. Naftaly, and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization.” Proce edings of the IEEE, 95(8), 1658-1665(2007).
    Y. S. Lee. “Principles of terahertz science and technology.” Springer Science & Business Media, 170, (2009).
    S. Atakaramians, S. Afshar, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: Design, fabrication and experimental characterization.” Opt. Express, 17(16), 14053-14062(2009).
    H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers.” Opt. Express, 20(28), 29507-29517(2012).
    A. L. S. Cruz, A. C. C. Migliano, J. G. Hayashi, C. M. B. Cordeiro, M. A. R. Franco, “Highly birefringent polymer terahertz fiber with microstructure of slots in the core.” In Proceedings of the 22nd International Conference on Plastic Optical Fibers (POF), Rio de Janeiro, Brazil, 7 June, 290–294(2013).
    R. Islam, M. S. Habib, G. K. M. Hasanuzzaman, R. Ahmad, S. Rana, and S. F. Kaijage, “Extremely High-Birefringent Asymmetric Slotted-Core Photonic Crystal Fiber in THz Regime.” IEEE Photonics Technol. Lett, 27, 2222-2225(2015).
    M. R. Hasan, S. Akter, T. Khatun, A. A. Rifat, and M. S. Anower, “Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance.” Opt. Eng., 56(4), 043108-043108(2017).
    M. Faisal, and M. S. Islam, “Extremely high birefringent terahertz fiber using a suspended elliptic core with slotted airholes.” Appl. Opt., 57(13), 3340–3347(2018).
    A. J. Lee, and T. Omatsu, “Direct Generation of Vortex Laser Beams and Their Non-Linear Wavelength Conversion.” Vortex Dynamics and Optical Vortices, Mar. 2017(2017).
    Z. Ji, W. Liu, S. Krylyuk, X. Fan, Z. Zhang, A. Pan, L. Feng, A. Davydov, and R. Agarwal, “Photocurrent detection of the orbital angular momentum of light.” Science, 368(6492), 763-767(2020).
    S. S. Wang, J. C. Yao, Z. W. Ou, X. J. Wang, Y. F. Long, J. Zhang, Z. Y. Fang, T. Wang, T. Ding, and H. X. Xu “Plasmon-assisted nanophase engineering of titanium dioxide for improved performances in single-particle based sensing and photocatalysis.” Nanoscale,14(12), 4705-4711(2022).
    B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum.” Science, 331(6014), 192-195(2011).
    Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, “Spatial terahertz modulator.” Sci. Rep., 3(1), 3347(2013)
    J. Y. Bae, C. Jeon, K. H. Pae, C. M. Kim, H. S. Kim, I. Han, W. J. Yeo, B. Jeong, M. Jeon, D. H. Lee, D. U. Kim, S. W. Hyun, H. Hur, K. S. Lee, G. H. Kim, K. S. Chang, I. W. Choi, C. H. Nam, and I. J. Kim, “Generation of low-order Laguerre-Gaussian beams using hybrid-machined reflective spiral phase plates for intense laser-plasma interactions.” Results in Physics, 19, 103499(2020).
    M. Massari, G. Ruffato, M. Gintoli, F. Ricci, and F. Romanato, “Fabrication and characterization of high-quality spiral phase plates for optical applications.” Applied Optics, 54(13), 4077-4083(2015).
    L. Zhang, S. Liu, L. Li, and T. J. Cui, “Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by Pancharatnam-Berry coding metasurfaces.” ACS applied materials & interfaces, 9(41), 36447-36455(2017).
    N. I. Zheludev, and Y. S. Kivshar, “From metamaterials to metadevices.” Nature materials, 11(11), 917-924(2012).
    H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices.” Nature, 444(7119), 597-600(2006).
    Z. Hao, Y. Li, S. Pu, J. Wang, F. Chen, and M. Lahoubi, “Ultrahigh-performance vector magnetic field sensor with wedge-shaped fiber tip based on surface plasmon resonance and magnetic fluid.” Nanophotonics, 11(15), 3519-3528(2022).
    Y. Zhang, S. Pu, Y. Li, Z. Hao, D. Li, S. Yan, M. Yuan, and C. Zhang, “Magnetic field and temperature dual-parameter sensor based on nonadiabatic tapered microfiber cascaded with FBG.” IEEE Access, 10, 15478-15486 (2022).
    J. Wang, S. Pu, Z. Hao, C. Zhang, W. Liu, and Y. Fan, “Comparative study of lab-on-fiber vector magnetic field sensor based on multimode and few-mode fiber.” Measurement, 207, 112441 (2023).
    Z. C. Xu, Y. L. Hou, and S. H. Sun, “Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties.” J. Am. Chem. Soc., 129(28), 8698-8699 (2007)
    L. Fan, B. Du, F. Pei, W. Hu, A. Guo, Z. Xie, B. Liu, Z. Tong, X. Mu, and W. Tan, “Surface Plasmon Resonance Sensor Based on Core-Shell Fe3O4@SiO2@Au Nanoparticles Amplification Effect for Detection of T-2 Toxin.” Sensors, 23(6), 3078(2023)
    J. C. Ginn, I. Brener, D. W. Peter, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials.” Phys. Rev. Lett., 108(9), 097402 (2012).
    J. Zhang, K. F. Macdonald, and N. I. Zheludev, “Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial.” Opt. Express, 21(22), 26721 (2013).
    L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region.” Nat. Commun., 4(1), 1904 (2013).
    S. O'Brien, and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites.” J. Phys. Condens. Mat., 14(15), 4035-4044 (2002).
    C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix.” IEEE T. Antenn. Propag., 51(10), 2596-2603 (2003).
    Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials.” Mat. Today, 12(12), 60-69 (2009).
    C. P. Bean, and J. D. Livingston, “Superparamagnetism.” Journal of Applied Physics, 30(4), S120-S129(1959).
    S. Pu, X. Chen, L. Chen, W. Liao, Y. Chen, and Y. Xia, “Tunable magnetic fluid grating by applying a magnetic field.” Appl. Phys. Lett., 87(2), 021901(2015).
    J. Philip, T. Jaykumar, P. Kalyanasundaram, and B. Raj, “A tunable optical filter.” Measurement Science and Technology, 14(8), 1289(2003).
    S. Taketomi, N. Inaba, H. Takahashi, H. Miyajima, “Field dependence of magnetic birefringence of magnetic fluid in low-magnetic-field region.” Journal of the Physical Society of Japan, 59(9), 3077-3080(1990).
    H. E. Horng, C. Y. Hong, H. C. Yang, I. J. Jang, S. Y. Yang, J. M. Wu, S. L. Lee, F. C. Kuo, “Magnetic field dependence of Cotton–Mouton rotation for magnetic fluid films.” J. Magn. Magn. Mater., 201(1-3), 215-217(1999).
    N. A. Yusuf, A. A. Rousan, and H. M. El‐Ghanem, “The wavelength dependence of Faraday rotation in magnetic fluids.” Journal of applied physics, 64(5), 2781-2782(1988).
    Z. Di, X. Chen, S. Pu, X. Hu, and Y. Xia, “Magnetic-field-induced birefringence and particle agglomeration in magnetic fluids.” Appl. Phys. Lett., 89(21), 211106(2006).
    J. Philip, J. M. Laskar, and B. Raj, “Magnetic field induced extinction of light in a suspension of Fe3O4 nanoparticles.” Appl. Phys. Lett., 92(22), 221911 (2008).
    J. von Neumann and E. Wigner, “On some peculiar discrete eigenvalues,” Phys. Z, 465, (1929).
    C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, “Observation of trapped light within the radiation continuum.” Nature, 499(7457), 188-191(2013).
    Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Analytical perspective for bound states in the continuum in photonic crystal slabs.” Phys. Rev. Lett., 113(3), 1-5, (2014).
    H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum.” Phys. Rev. A, 32(6), 3231-3242(1985).
    S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface fano states embedded in the continuum of waveguide arrays.” Phys. Rev. Lett., 111(24), 1-5(2013).
    S. Longhi, “Bound states in the continuum in a single-level Fano-Anderson model.” Eur. Phys. J. B, 57, 45-51(2007).
    D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics.” Phys. Rev. Lett., 100(18), 1-4(2008).
    E. Bulgakov and A. Sadreev, “Formation of bound states in the continuum for a quantum dot with variable width.” Phys. Rev. B Condens. Matter, 83(23), 1-9(2011).
    T. Lepetit and B. Kanté, “Controlling multipolar radiation with symmetries for electromagnetic bound states in the continuum,” Phys. Rev. B Condens. Matter, 90(24), 1-4(2014).
    D. N. Maksimov, V. S. Gerasimov, and S. Romano, “Refractive index sensing with optical bound states in the continuum.” Opt. Express, 28(26), 38907-38916(2020).
    S. Mesli, H. Yala, M. Hamidi, A. BelKhir, and F. I. Baida, “High performance for refractive index sensors via symmetry-protected guided mode resonance,” Opt. Express, 29(14), 21199-21211(2021).
    L. L. Doskolovich, E. A. Bezus, and D. A. Bykov, “Integrated flat-top reflection filters operating near bound states in the continuum,” Photon. Res., 7(11), 1314-1322(2019).
    F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics, 13(6), 390-396(2019).
    L. Guo, Z. Zhang, Q. Xie, W. Li, F. Xia, M. Wang, H. Feng, C. You, and M. Yun, “Toroidal dipole bound states in the continuum in all-dielectric metasurface for high-performance refractive index and temperature sensing.” Appl. Surf. Sci., 615, 156408(2023).
    T. Gu, L. Qian, and K. Wang, “Flat-top filter using slanted guided-mode resonance gratings with bound states in the continuum.” Opt. Commun., 521, 128569(2022).
    T. Shi, Z. L. Deng, Q. A. Tu, Y. Cao, and X. Li, “Displacement-mediated bound states in the continuum in all-dielectric superlattice metasurfaces.” PhotoniX, 2(1) 1-10(2021).
    X. Liu, F. Li, Y. Li, T. Tang, Y. Liao, Y. Lu, and Q. Wen, “Terahertz metasurfaces based on bound states in the continuum (BIC) for high-sensitivity refractive index sensing.” Optik, 261,169248(2022).
    Y. S. Lee, “Principles of terahertz science and technology.” Springer Science & Business Media, 170, (2009).
    J. R. Middendorf, D. A. LeMaster, M. Zarepoor and E. R. Brown1, “Design of Multi-Order Diffractive THz Lenses.” 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves. IEEE, 2012.
    E. Walsby, S. Wang, J. Xu, T. Yuan, R. Blaikie, S. Durbin, X. Zhang and D. Cumming, “Multilevel silicon diffractive optics for terahertz waves,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 20(6), 2780-2783 (2002).
    B. Scherger, M. Scheller, C. Jansen, M. Koch and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Applied Optics, 50(15), 2256-2262(2011).
    X. Chen, J. Han, W. Zhang, L. Zhang, and C. Liu, “Silica-based ceramic core for aviation applications: Facile pore filling and flexural strength improvement,” Int. J. Appl. Ceram. Technol., 16(6), 2181-2189(2019).
    E. N. Kablov, D. V. Grashchenkov, N. V. Isaeva, S. S. Solntsev, and V. G. Sevast’yanov, “Glass and ceramics based high-temperature composite materials for use in aviation technology,” Glass Ceram, 69(3-4), 109–112 (2012).
    J. Li and G. W. Hastings, “Chapter 5 Oxide Bioceramics: Inert Ceramic Materials in Medicine and Dentistry,” Handbook of biomaterial properties, 339–352 (2016).
    S. M. Barinov, “Calcium phosphate-based ceramic and composite materials for medicine,” Russ. Chem. Rev., 79(1), 13-29 (2010).
    S. Balasubramanian, B. Gurumurthy, and A. Balasubramanian, “Biomedical applications of ceramic nanomaterials: a review,” Int. J. Pharm. Sci. Res., 8(12), 4950-4959 (2017).
    R. Madrid, C.A. Nogueira, and F. Margarido, “Production and Characterisation of Amorphous Silica from Rice Husk Waste,” WasteEng’2012: Proceedings of the 4th international conference on engineering for waste and biomass valorization, (2012).
    R. Ghosh, “A Review Study on Precipitated Silica and Activated Carbon from Rice Husk.” Journal of Chemical Engineering & Process Technology, 4(4), 1-7, (2013)
    V. Ulitko, A. Zotov, A. Gavdush, G. Katyba, G. Komandin, I. Spektor, I. Shmytko, G. Emelchenko, I. Dolganova, M. Skorobogatiy, V. Kurlov, V. Masalov and K. Zaytsev. “Nanoporous SiO2 based on annealed artificial opals as a favorable material platform of terahertz optics.” Opt. Mater. Express, 10(9), 2100-2133(2020).
    W. Ke, M. Miao, B. Liu, Q. Wu and T. Liu, “Structural Characteristics and Properties of Polylactic Acid (PLA) and Cellulose Triacetate (CTA) Fibers for Heat-Not-Burn (HNB) Cigarettes,” IOP Conference Series: Earth and Environmental Science, 719, 042044 (2021).
    N. Song, H. Pan, X. Hou, S. Cui, L. Shi and P. Ding, “Enhancement of thermal conductivity in polyamide-6/graphene composites via a “bridge effect” of silicon carbide whiskers,” RSC Adv., 7(73), 46306-46312 (2017).
    X. Wei, L. Zhu, Z. Zhang, K. Wang, J. Liu, and J. Wang, “Orbit angular momentum multiplexing in 0.1-THz free-space communication via 3D printed spiral phase plates.” 2014 Conference on Lasers and Electro-Optics (CLEO)-Laser Science to Photonic Applications. IEEE, (2014).
    J. Sun and F. Hu, “Three‐dimensional printing technologies for terahertz applications: A review,” International Journal of RF and Microwave Computer-Aided Engineering, 30(1), (2019).
    L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu. “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications.” OFC 2014. IEEE, 1-3(2014).
    V. A. Semenova, M. S. Kulya, N. V. Petrov, Y. V. Grachev, A. N. Tsypkin, S. E. Putilin, and V. G. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate.” 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, (2016).
    M. Massari, G. Ruffato, M. Gintoli, F. Ricci, and F. Romanato, “Fabrication and characterization of high-quality spiral phase plates for optical applications.” Applied Optics, 54(13), 4077-4083(2015).
    P. Schemmel, G. Pisano, and B. Maffei, “Modular spiral phase plate design for orbital angular momentum generation at millimetre wavelengths,” Opt. Express 22(12), 14712-14726 (2014).
    P. Schemmel, S. Maccalli, G. Pisano, B. Maffei, and M. W. R. Ng, “Three-dimensional measurements of a millimeter wave orbital angular momentum vortex,” Opt. Lett. 39(3), 626–629 (2014).
    G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phase plate,” Opt. Commun. 127(4-6), 183-188 (1996).
    N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces” Nano Lett., 12(12), 6328-6333(2012).
    Y. J. Tsai, S. Larouche, T. Tyler, G. Lipworth, N. M. Jokerst, D. R. Smith, “Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths.” Opt. Express, 19(24), 24411-24423(2011).
    J. He, X. Wang, D. Hu, J. Ye, S. Feng, Q. Kan, and Y. Zhang, “Generation and evolution of the terahertz vortex beam.” Opt. Express, 21(17), 20230-20239 (2013).
    H. Chung, D. Kim, A. Sawant, I. Lee, E. Choi, and J. Lee, “Generation of E-band metasurface-based vortex beam with reduced divergence angle.” Sci. Rep., 10(1), 8289(2020).
    Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings.” Optics letters, 27(13), 1141-1143(2002).
    S. Pancharatnam, “Generalized theory of interference, and its applications: Part I. Coherent pencils.” Proc. Ind. Acad. Sci., 44(5), 247(1956).
    M. V. Berry, “The adiabatic phase and Pancharatnam's phase for polarized light.” J. Mod. Opt., 34(11), 1401(1987).
    C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum.” Nat. Rev. Mater., 1(9), 1-13(2016).
    J. Li, C. Zheng, Z. Yue, S. Wang, M. Li, H. Zhao, Y. Zhang, and J. Yao, “Free switch between bound states in the continuum (BIC) and quasi-BIC supported by graphene-metal terahertz metasurfaces.” Carbon, 182, 506-515(2021).
    S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of bound states in the continuum in hybrid plasmonic-photonic systems,” Phys. Rev. Lett. 121(25), 253901(2018).
    W. Cen, T. Lang, J. Wang, and M. Xiao “High-Q Fano terahertz resonance based on bound states in the continuum in all-dielectric metasurface.” Appl. Surf. Sci., 575, 151723(2022).
    S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, and R. Singh, “All‐dielectric active terahertz photonics driven by bound states in the continuum.” J. Adv. Mater., 31(37), 1901921(2019).
    J. D. Joannopoulos, R. D. Meade, and J. N. Winn, “Photonic Crystals-Molding the Flow of Light,” Princeton University Press, 41, William Street, Princeton, New Jersey, 08540, (1995)
    Z. G. Ye, “Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials.” Elsevier, (2018)
    Y. A. Wei, B. C. Peng, T. Y. Chao, C. P. Cheng, C. S. Yang, “High Q Terahertz grating structure based on continuum bound state.” Appl. Phys. Lett., in preparation (2024).
    S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, and R. Singh, “All-Dielectric Active Terahertz Photonics Driven by Bound States in the Continuum” J. Adv. Mater., 31(37), 1901921(2019).
    S. Han, P. Pitchappa, W. Wang, Y. K. Srivastava, M. V. Rybin, R. Singh, “Extended bound states in the continuum with symmetry‐broken terahertz dielectric metasurfaces.” Adv. Opt. Mater., 9(7), 2002001(2021).
    P. Wang, F. He, J. Liu, F. Shu, B. Fang, T. Lang, X. Jing, and Z. Hong, “Ultra-high-Q resonances in terahertz all-silicon metasurfaces based on bound states in the continuum.” Photonics Res., 10(12), 2743-2750 (2022).
    S. Chen, F. Fan, S. Chang, Y. Miao, M. Chen, J. Li, X. Wang, and L. Lin, “Tunable optical and magneto-optical properties of ferrofluid in the terahertz regime.” Opt. Express, 22(6), 6313-6321(2014).
    X. Liu, L. Xiong, X. Yu, S. He, B. Zhang, and J. Shen, “Magnetically controlled terahertz modulator based on Fe3O4 nanoparticle ferrofluids,” J. Phys. D: Appl. Phys., 51(10), 105003(2018).
    Y. A. Wei, P. J. Wu, P. Y. Tsai, K. L. Chen, and C. S. Yang, “Enhanced tunable terahertz Mie resonance and magnetoplasmonic effect through chain formation in ferrofluid.” Appl. Phys. Lett., 123(9), (2023).
    T. Suzuki, K. Takayama, S. Yamauchi, Y. Imai, and M. Tonouchi, “Measurement of water absorption coefficient using terahertz time-domain spectroscopy.” 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves. IEEE, (2009).
    M. V. Exter, and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz.” Appl. Phys. Lett., 56(17), 1694-1696(1990).
    Y. S. Jin, G. J. Kim, C. H. Shon, S. G. Jeon, and J. I. Kim, “Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy.” J. Korean Phys, Soc., 53(4), 1879-1885(2008)
    T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K, Yamamoto, M. Tani, and M. Hangyo, “Investigation of inflammable liquids by terahertz spectroscopy.” Appl. Phys. Lett., 87(3), 034105(2005).

    無法下載圖示 本全文未授權公開
    QR CODE