簡易檢索 / 詳目顯示

研究生: 陳家祥
Chia-Hsiang CHEN,
論文名稱: 自行車座椅位置對下肢關節力學與運動表現之影響
Effects of saddle position on lower limb joint biomechanics and performance in cycling
指導教授: 相子元
Shiang, Tzyy-Yuang
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 153
中文關鍵詞: 自行車姿勢調整座椅高度座椅前後運動生物力學
英文關鍵詞: bike fitting, seat height, seat forward, sports biomechanics
論文種類: 學術論文
相關次數: 點閱:199下載:57
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正確的騎乘姿勢不但可以減少運動傷害,更可以提升運動表現,但在何種姿勢調整下,可以提供較好的運動表現或騎乘舒適性,仍缺乏實證性的科學證據。因此設計三個實驗進行探討。目的:實驗一:探討自行車不同坐墊位置對運動學、動力學及肌肉活化的影響;實驗二:探討疲勞介入後對不同坐墊位置騎乘姿勢的影響;實驗三:探討自行車不同坐墊位置騎乘姿勢調整前、後的運動表現。方法:本研究三個實驗之受試者(平均身高:176.5±5.5公分;平均體重:75.4±8.4 公斤;平均年齡:25.6±3.8 歲)均相同。實驗一與實驗二:為室內實驗,透過動作分析系統、測力計、肌電儀分別觀察自行車不同坐墊位置(前後、上下)對運動學、動力學及肌肉活化的影響及探討疲勞介入後對不同坐墊位置自行車騎乘姿勢的影響。實驗三:為戶外實驗,透過SRM 功率計計算實際騎乘之功率、時間與心跳。所有的統計結果均採用重複量數變異數分析,顯著水準訂為α=.05。結果:最有效率的騎乘位置為:髖關節角度為85度,膝關節角度為145 度 (35度),踝關節角度為90度 (下死點膝關節角度在30度,並向前移動5公分)。當坐墊位置向前移動,會有較大的平均髖、膝、踝關節及最大的踝關節關節力矩、股四頭肌及腓腸肌的肌肉活化,不同坐墊位置會使用不同的關節策略(5號使用髖關節策略與6號使用踝關節),增加固定騎乘下的時間及減少20公里的戶外騎乘的時間。當坐墊位置向前移動,可提高騎乘之運動表現及舒適性。結論:過去研究發現在最佳自行車踩踏位置為下死點膝關節角度在30度,然而本研究發現下死點膝關節角度在30度並向前移動5公分為最有效率得騎乘位置,當坐墊位置向前移動可透過踝關節產生較有效率的踩踏提升運動表現。

    Proper riding posture can reduce injuries and enhance performance. However, still lack of empirical scientific evidencehas to determine the porper riding posture for better performance and riding comfort. Therefore, the purposes of this study were to investigate the most porper riding posture by processing three experimental designs. The first experiment was to determine the effects of different saddle positions on kinematics, kinetics and muscle activation during cycling. The second experiment was to exame the fatigue factors in different saddle postitions by using EMG analysis. The third experiment was to prove the effects of new saddle position on cycling performance in road riding. Methods: Fifteen participants (average height: 176.5 ± 5.5 cm; average weight: 75.4 ± 8.4 kilograms; average age: 25.6 ± 3.8 years) were recurited in this study. The first and second experiments were laboratory tests, we observed different bike seat positions (forword to backword, bottom to top) on the kinematics, kinetics and muscle activation, as well as fatigue intervention through motion analysis system, dynamometer. Third experiment was outdoor experiments, which calculate the actual riding power, time and heart rate using SRM power meter. Repeated measures analysis of variance was used for all statistical tests, the significance level was set at α = .05. Results: The most efficient riding position was at 85 degrees in the hip joint angle, the knee angle was 145 degrees (35 degrees), the ankle joint angle was 90 degrees (bottom dead point with the knee angle at 30 degrees, and move 5 cm forward). There were greater average hip, knee, ankle joint moment and maximal ankle joint moment, quadriceps and gastrocnemius muscle activation when the seat position was moved to forward. Different seat positions caused different joint strategies, hip strategy was used for the 5th position and ankle strategy was used for the 6th position. The posture in 6th saddle position could increase 24% in riding time during exhaustion test and reduce 7% on 20 km outdoor riding time. When the seat position was moved to forward, the performance and ride comfort was improved. Conclusions: Previous studies found that the best position for the knee angle was 30 degrees in bottom dead point, however, this study found that the most efficient riding position was 30 degrees in knee angle of bottom dead point and move 5 cm forward. The posture of seat position moved forward could produce more efficient pedaling and enhance performance through the ankle joint.

    中文摘要 i 英文摘要 ii 謝 誌 iv 目 次 v 表 次 vii 圖 次 viii 第一章 緒論 1 第一節 前言 1 第二節 問題背景 2 第三節 研究目的 3 第四節 研究假設 3 第五節 研究範圍與限制 4 第六節 操作性名詞定義解釋 5 第二章 文獻探討 7 第一節 不同坐墊位置之設定 7 第二節 不同坐墊位置對運動表現之影響 8 第三節 不同坐墊位置對運動傷害之影響 9 第四節 自行車下肢疲勞相關之研究 18 第五節 自行車踩踏效益相關之研究 20 第三章 研究方法 31 實驗一:自行車不同坐墊位置對運動學、動力學及肌肉活化的影響 31 實驗一 受試者 31 實驗一 儀器設備 31 實驗一 流程 34 實驗一 資料處理與統計分析 36 實驗一 統計方法 37 實驗二:探討自行車疲勞介入對騎乘對姿勢的影響 38 實驗二 受試者 38 實驗二 儀器設備 38 實驗二 流程 39 實驗二 資料處理 41 實驗二 統計方法 41 實驗三:探討自行車騎乘姿勢調整後的運動表現 42 實驗三 受試者 42 實驗三 儀器設備 42 實驗三 流程 42 實驗三 資料處理 44 實驗三 統計方法 44 第四章 結果 45 實驗一:自行車不同坐墊位置對運動學、動力學及肌肉活化的影響 45 實驗二:探討自行車疲勞介入對騎乘對姿勢的影響 102 實驗三:探討自行車騎乘姿勢調整後的運動表現 123 第五章 討論 126 實驗一:自行車不同坐墊位置對運動學、動力學及肌肉活化的影響 126 實驗二:探討自行車疲勞介入對騎乘對姿勢的影響 130 實驗三:探討自行車騎乘姿勢調整後的運動表現 134 第六章 結論 137 引用文獻 139

    Albertus-Kajee, Y., Tucker, R., Derman, W., & Lambert, M. (2010). Alternative methods of normalising EMG during cycling. Journal of Electromyography and Kinesiology, 20(6), 1036-1043.
    Albertus-Kajee, Yumna, Tucker, Ross, Derman, Wayne, Lamberts, Robert P, & Lambert, Michael I. (2011). Alternative methods of normalising EMG during running. Journal of Electromyography and Kinesiology, 21(4), 579-586.
    Amoroso, A, Sanderson, DJ, & Hennig, EM. (1993). Kinematic and kinetic changes in cycling resulting from fatigue. Paper presented at the Proceedings of 14th International Congress of Biomechanics. Paris.
    Ansley, Les, & Cangley, Patrick. (2009). Determinants of “optimal” cadence during cycling. European Journal of Sport Science, 9(2), 61-85.
    Asmussen, Erling. (1979). Muscle fatigue. Medicine and Science in Sports, 11(4), 313.
    Asplund, Chad, & St Pierre, Patrick. (2004). Knee pain and bicycling. The Physician and Sports Medicine, 32(4), 1-12.
    Astorino, Todd, Baker, Julien, Boone, Tommy, Dalleck, Lance, Drury, Dan, Engals, DPE Hermann, . . . Gotshall, Robert. (2005). COMPARING METHODS FOR SETTING SADDLE HEIGHT IN TRAINED CYCLISTS. JEP online, 8(1).
    Böhm, Harald, Siebert, Stefan, & Walsh, Mark. (2008). Effects of short-term training using SmartCranks on cycle work distribution and power output during cycling. European Journal of Applied Physiology, 103(2), 225-232.
    Belluye, N., & Cid, M. (2001). Approche biomécanique du cyclisme moderne, données de la littérature: Biomechanics approach to modern cycling, literature data's. Science & sports, 16(2), 71-87.
    Bentley, David J, Smith, Phillip A, Davie, Allan J, & Zhou, Shi. (2000). Muscle activation of the knee extensors following high intensity endurance exercise in cyclists. European Journal of Applied Physiology, 81(4), 297-302.
    Bigland‐Ritchie, B, & Woods, JJ. (1984). Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle & Nerve, 7(9), 691-699.
    Billaut, François, Basset, Fabien A, & Falgairette, Guy. (2005). Muscle coordination changes during intermittent cycling sprints. Neuroscience Letters, 380(3), 265-269.
    Bini, R., Hume, P. A., & Croft, J. L. (2011). Effects of bicycle saddle height on knee injury risk and cycling performance. Sports Medicine, 41(6), 463-476. doi: 10.2165/11588740-000000000-00000
    Bini, Rodrigo, Diefenthaler, Fernando, Carpes, Felipe, & Mota, Carlos Bolli. (2007). External work bilateral symmetry during incremental cycling exercise. Paper presented at the 25 International Symposium on Biomechanics in Sports. International Society of Biomechanics in Sports, Ouro Preto, Brazil.
    Bini, Rodrigo R, & Diefenthaeler, Fernando. (2010). Kinetics and kinematics analysis of incremental cycling to exhaustion. Sports Biomechanics, 9(4), 223-235.
    Bini, Rodrigo Rico, Carpes, Felipe Pivetta, & Diefenthaeler, Fernando. (2009). Effects of knee frontal plane position on pedal forces during cycling: A preliminary study. Brazilian Journal of Kinanthropometry and Human Performance, 11(2), 142-149.
    Bini, Rodrigo Rico, Diefenthaeler, Fernando, & Mota, Carlos Bolli. (2010). Fatigue effects on the coordinative pattern during cycling: Kinetics and kinematics evaluation. Journal of Electromyography and Kinesiology, 20(1), 102-107.
    Bini, Rodrigo Rico, Hume, Patria A, & Kilding, Andrew E. (2012). Saddle height effects on pedal forces, joint mechanical work and kinematics of cyclists and triathletes. European Journal of Sport Science(ahead-of-print), 1-9.
    Bini, Rodrigo Rico, Hume, Patria A, Lanferdini, Fabio J, & Vaz, Marco A. (2012). Effects of body positions on the saddle on pedalling technique for cyclists and triathletes. European Journal of Sport Science(ahead-of-print), 1-8.
    Bini, Rodrigo Rico, Hume, Patria Anne, Lanferdini, Fabio Junner, & Vaz, Marco Aurélio. (2013). Effects of moving forward or backward on the saddle on knee joint forces during cycling. Physical Therapy in Sport, 14(1), 23-27.
    Black, AH, Sanderson, DJ, & Hennig, EM. (1994). Kinematic and kinetic changes during an incremental exercise test on a bicycle ergometer. Journal of Biomechanics, 27(6), 656.
    Borysewicz, Edward, & Pavelka, Ed. (1985). Bicycle Road Racing: Complete Program for Training and Competition: Velo-News.
    Bressel, Eadric. (2001). The influence of ergometer pedaling direction on peak patellofemoral joint forces. Clinical Biomechanics, 16(5), 431-437.
    Browning, RC, Gregor, RJ, & Broker, JP. (1992). Lower Extremity Kinetics in Elite Athletes in Aerodynamic Cycling Positions. Medicine & Science in Sports & Exercise, 24(5), S186.
    Burke, Ed. (2002). Serious cycling: Human Kinetics.
    Burke, Edmund R, & Pruitt, AL. (2003). Body positioning for cycling. High Tech Cycling. Champaign, Il.: Humans Kinetics, 69-92.
    Candotti, Cláudia Tarragô, Loss, Jefferson Fagundes, Bagatini, Daniel, Soares, Denise Paschoal, da Rocha, Everton Kruel, de Oliveira, Álvaro Reischak, & Guimarães, Antônio Carlos Stringuini. (2009). Cocontraction and economy of triathletes and cyclists at different cadences during cycling motion. Journal of Electromyography and Kinesiology, 19(5), 915-921.
    Candotti, Claudia Tarrago, Ribeiro, Jerri, Soares, Denise Paschoal, De Oliveira, Alvaro Reischak, Loss, Jefferson Fagundes, & Guimaraes, Antonio Carloss. (2007). Effective force and economy of triathletes and cyclists. Sports Biomechanics, 6(1), 31-43.
    Cavanagh, P, & Sanderson, D. (1986). The biomechanics of cycling: Studies of the pedaling mechanics of elite pursuit riders. Science of cycling, 5, 91-122.
    Chapman, A.R., Vicenzino, B., Blanch, P., Knox, J.J., & Hodges, P.W. (2010). Intramuscular fine-wire electromyography during cycling: repeatability, normalisation and a comparison to surface electromyography. Journal of Electromyography and Kinesiology, 20(1), 108-117.
    Cohen, Zohara A, Roglic, Hrvoje, Grelsamer, Ronald P, Henry, Jack H, Levine, William N, Mow, Van C, & Ateshian, Gerard A. (2001). Patellofemoral stresses during open and closed kinetic chain exercises an analysis using computer simulation. The American Journal of Sports Medicine, 29(4), 480-487.
    Cook, J.L., Khan, K.M., Maffulli, N., Purdam, C., & Phty, D. (2000). Overuse tendinosis, not tendinitis. Phys Sportsmed, 28(6), 31-46.
    Coyle, EF, Feltner, ME, Kautz, SA, Hamilton, MT, Montain, SJ, Baylor, AM, . . . Petrek, GW. (1991). Physiological and biomechanical factors associated with elite endurance cycling performance. Medicine & Science in Sports & Exercise, 23(1), 93-107.
    Dannenberg, A.L., Needle, S., Mullady, D., & Kolodner, K.B. (1996). Predictors of injury among 1638 riders in a recreational long-distance bicycle tour: Cycle Across Maryland. The American journal of sports medicine, 24(6), 747.
    De Luca, Carlo J. (1993). Use of the surface EMG signal for performance evaluation of back muscles. Muscle & Nerve, 16(2), 210-216.
    De Luca, CJ. (1983). Myoelectrical manifestations of localized muscular fatigue in humans. Critical Reviews in Biomedical Engineering, 11(4), 251-279.
    de Vey Mestdagh, K. (1998). Personal perspective in search of an optimum cycling posture. Applied Ergonomics, 29(5), 325-334.
    Desiprés, M. (1974). An electromyographic study of competitive road cycling conditions simulated on a treadmill. Biomechanics IV, 349-355.
    Diefenthaeler, Fernando, Bini, Rodrigo R, Carpes, Felipe P, & Vaz, Marco A. (2007). Analysis of pedaling technique during a maximal cycling exercise. Paper presented at the ISBS-Conference Proceedings Archive.
    Diefenthaeler, Fernando, Bini, Rodrigo R, Laitano, Orlando L, Guimarães, Antônio CS, Nabinger, Eduardo, Carpes, Felipe P, . . . Coyle, Edward F. (2006). Assessment of the Effects of Saddle Position on Cyclists' Pedaling Technique: 1360: Board# 5. Medicine & Science in Sports & Exercise, 38(5), S181.
    Diefenthaeler, Fernando, Bini, Rodrigo Rico, Nabinger, Eduardo, Laitano, Orlando, Carpes, Felipe Pivetta, Mota, Carlos Bolli, & Guimarães, Antônio Carlos Stringhini. (2008). Methodological proposal for evaluation of the pedaling technique of cyclists: A case study. Revista Brasileira de Medicina do Esporte, 14(2), 155-158.
    Dorel, S, Couturier, A, & Hug, F. (2009a). Influence of different racing positions on mechanical and electromyographic patterns during pedalling. Scandinavian Journal of Medicine & Science in Sports, 19(1), 44-54.
    Dorel, Sylvain, Drouet, Jean-Marc, Couturier, Antoine, Champoux, Yvan, & Hug, FranCOis. (2009b). Changes of pedaling technique and muscle coordination during an exhaustive exercise. Medicine & Science in Sports & Exercise, 41(6), 1277.
    Edwards, RG, & Lippold, OCJ. (1956). The relation between force and integrated electrical activity in fatigued muscle. The Journal of Physiology, 132(3), 677.
    Emanuele, Umberto, Horn, Tamara, & Denoth, Jachen. (2011). Influence of racing position on cycling patterns. Paper presented at the ISBS-Conference Proceedings Archive.
    Ericson, Mats O, & Nisell, R. (1988). Efficiency of pedal forces during ergometer cycling. International Journal of Sports Medicine, 9(02), 118-122.
    Ericson, Mats O, Nisell, R, Arborelius, UP, & Ekholm, J. (1984). Muscular activity during ergometer cycling. Scandinavian Journal of Rehabilitation Medicine, 17(2), 53-61.
    Ericson, Mats O, & Nisell, Ralph. (1986). Tibiofemoral joint forces during ergometer cycling. The American Journal of Sports Medicine, 14(4), 285-290.
    Ericson, Mats O, & Nisell, Ralph. (1987). Patellofemoral joint forces during ergometric cycling. Physical Therapy, 67(9), 1365-1369.
    Faria, Irvin, Cavanagh, Peter R, & Vandervelde, Ann. (1978). The physiology and biomechanics of cycling: Wiley.
    Farina, Dario. (2006). Interpretation of the surface electromyogram in dynamic contractions. Exercise and Sport Sciences Reviews, 34(3), 121-127.
    Farina, Dario, Gazzoni, Marco, & Merletti, Roberto. (2003). Assessment of low back muscle fatigue by surface EMG signal analysis: methodological aspects. Journal of Electromyography and Kinesiology, 13(4), 319-332.
    Farina, Dario, Macaluso, Andrea, Ferguson, Richard A, & De Vito, Giuseppe. (2004a). Effect of power, pedal rate, and force on average muscle fiber conduction velocity during cycling. Journal of Applied Physiology, 97(6), 2035-2041.
    Farina, Dario, Merletti, Roberto, & Enoka, Roger M. (2004b). The extraction of neural strategies from the surface EMG. Journal of Applied Physiology, 96(4), 1486-1495.
    Farrell, K.C., Reisinger, K.D., & Tillman, M.D. (2003). Force and repetition in cycling: possible implications for iliotibial band friction syndrome. The Knee, 10(1), 103-109.
    Ferrer-Roca, V., Roig, A., Galilea, P., & García-López, J. (2011). Influence of Saddle Height on Lower Limb Kinematics in Well-Trained Cyclists. Static Versus Dynamic Evaluation in Bike Fitting. The Journal of Strength & Conditioning Research.
    Gandevia, SC. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews, 81(4), 1725-1789.
    Garrett, William E, & Kirkendall, Donald T. (2000). Exercise and sport science: Wolters Kluwer Health.
    Garside, Ian, & Doran, Dominic A. (2000). Effects of bicycle frame ergonomics on triathlon 10-km running performance. Journal of Sports Sciences, 18(10), 825-833.
    Gerdle, B, Eriksson, NE, & Brundin, L. (1990). The behaviour of the mean power frequency of the surface electromyogram in biceps brachii with increasing force and during fatigue. With special regard to the electrode distance. Electromyography and clinical Neurophysiology, 30(8), 483-489.
    Gonzalez, Hiroko, & Hull, ML. (1989). Multivariable optimization of cycling biomechanics. Journal of Biomechanics, 22(11), 1151-1161.
    Gregor, Robert J, Broker, Jeffrey P, & Ryan, Mary Margaret. (1991). The biomechanics of cycling. Exercise and Sport Sciences Reviews, 19(1), 127-170.
    Hagg, Goran M. (1992). Interpretation of EMG spectral alterations and alteration indexes at sustained contraction. Journal of Applied Physiology, 73(4), 1211-1217.
    Hamley, EJ y, & Thomas, V. (1967). Physiological and postural factors in the calibration of the bicycle ergometer. The Journal of Physiology, 191(2), 55P-56P.
    Hansen, Ernst A, & Waldeland, Harry. (2008). Seated versus standing position for maximization of performance during intense uphill cycling. Journal of Sports Sciences, 26(9), 977-984.
    Hausswirth, Christophe, Vallier, Jean-Marc, Lehenaff, Didier, Brisswalter, Jeanick, Smith, Darren, Millet, Gregoire, & Dreano, Patrick. (2001). Effect of two drafting modalities in cycling on running performance. Medicine and Science in Sports and Exercise, 33(3), 485-492.
    Hautier, CHRISTOPHE ANDRE, Arsac, LAURENT MAURICE, Deghdegh, K, Souquet, JIMMY, Belli, ALAIN, & Lacour, JEAN-RENE. (2000). Influence of fatigue on EMG/force ratio and cocontraction in cycling. Medicine & Science in Sports & Exercise, 32(4), 839-843.
    Heil, Daniel P, Wilcox, Anthony R, & Quinn, Chris M. (1995). Cardiorespiratory responses to seat-tube angle variation during steady-state cycling. Medicine and Science in Sports and Exercise, 27(5), 730-735.
    Hettinga, Florentina J, De Koning, Jos J, Broersen, Frank T, Van Geffen, PAUL, & Foster, CARL. (2006). Pacing strategy and the occurrence of fatigue in 4000-m cycling time trials. Medicine & Science in Sports & Exercise, 38(8), 1484.
    Holderbaum, GG, Guimarães, ACS, & Petersen, RDS. (2007). Analysis of the recovering phase after thecycling practice using augmented visual feedback. Paper presented at the ISBS-Conference Proceedings Archive.
    Holmes, JC, Pruitt, AL, & Whalen, NJ. (1994). Lower extremity overuse in bicycling. Clinics in Sports Medicine, 13(1), 187-205.
    Housh, Terry J, Perry, Sharon R, Bull, Anthony J, Johnson, Glen O, Ebersole, Kyle T, & Housh, Dona J. (2000). Mechanomyographic and electromyographic responses during submaximal cycle ergometry. European Journal of Applied Physiology, 83(4-5), 381-387.
    Houtz, SJ, & Fischer, Frederick J. (1959). An analysis of muscle action and joint excursion during exercise on a stationary bicycle. The Journal of Bone & Joint Surgery, 41(1), 123-131.
    Hug, François, & Dorel, Sylvain. (2009). Electromyographic analysis of pedaling: A review. Journal of Electromyography and Kinesiology, 19(2), 182-198. doi: http://dx.doi.org/10.1016/j.jelekin.2007.10.010
    Hunter, Angus M, Gibson, A St Clair, Lambert, Mike I, Nobbs, L, & Noakes, Timothy D. (2003). Effects of supramaximal exercise on the electromyographic signal. British Journal of Sports Medicine, 37(4), 296-299.
    Jackson, Kurt, Mulcare, Janet, & Duncan, Robert. (2008). The effects of bicycle seat-tube angle on the metabolic cost of the cycle-run transition in triathletes. Journal of Exercise Physiology Online, 11(1).
    Jorge, M, & Hull, ML. (1986). Analysis of EMG measurements during bicycle pedalling. Journal of Biomechanics, 19(9), 683-694.
    Karlsson, Stefan, Yu, Jun, & Akay, Metin. (2000). Time-frequency analysis of myoelectric signals during dynamic contractions: a comparative study. Biomedical Engineering, IEEE Transactions on, 47(2), 228-238.
    Kautz, Steven A, Feltner, Michael E, Coyle, Edward F, & Baylor, Ann M. (1991). The pedaling technique of elite endurance cyclists: changes with increasing workload at constant cadence. International Journal of Sport Biomechanics, 7(1), 29-53.
    Kirk, K.L., Kuklo, T., & Klemme, W. (2000). Iliotibial band friction syndrome. Orthopedics, 23(11), 1209.
    Knaflitz, Marco, & Molinari, Filippo. (2003). Assessment of muscle fatigue during biking. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 11(1), 17-23.
    Korff, Thomas, Romer, Lee M, Mayhew, Ian, & Martin, James C. (2007). Effect of pedaling technique on mechanical effectiveness and efficiency in cyclists. Medicine & Science in Sports & Exercise, 39(6), 991.
    Krogh-Lund, Claes, & Jørgensen, Kurt. (1991). Changes in conduction velocity, median frequency, and root mean square-amplitude of the electromyogram during 25% maximal voluntary contraction of the triceps brachii muscle, to limit of endurance. European Journal of Applied Physiology and Occupational Physiology, 63(1), 60-69.
    Lafortune, MA, & Cavanagh, PR. (1983). Effectiveness and efficiency during bicycle riding. Matsui & Kobashi K (Ed.) Biomechanics VIII-B. Champaign, Il: Human Kinetics, 928-936.
    Leirdal, Stig, & Ettema, Gertjan. (2011). Pedaling technique and energy cost in cycling. Medicine & Science in Sports & Exercise, 43, 701-705.
    Lepers, Romuald, Maffiuletti, Nicola A, Rochette, Ludovic, Brugniaux, Julien, & Millet, Guillaume Y. (2002). Neuromuscular fatigue during a long-duration cycling exercise. Journal of Applied Physiology, 92(4), 1487-1493.
    Lindstrom, L, Magnusson, R, & Petersen, I. (1970). Muscular fatigue and action potential conduction velocity changes studied with frequency analysis of EMG signals. Electromyography, 10(4), 341.
    Lucia, Alejandro, Hoyos, Jesos, Perez, Margarita, Santalla, Alfredo, & Chicharro, Jose L. (2002). Inverse relationship between VO2 max and economy/efficiency in world-class cyclists. Medicine & Science in Sports & Exercise, 34(12), 2079-2084.
    Lucia, Alejandro, Juan, Afs, Montilla, Manuel, Canete, Silvia, Santalla, Alfredo, Earnest, Conrad, & Perez, Margarita. (2004). In professional road cyclists, low pedaling cadences are less efficient. Medicine & Science in Sports & Exercise, 36(6), 1048-1054.
    Macintosh, Brian R, Neptune, Richard R, & Horton, John F. (2000). Cadence, power, and muscle activation in cycle ergometry. Medicine & Science in Sports & Exercise, 32(7), 1281-1287.
    Marsh, Anthony P, Martin, Philip E, & Sanderson, David J. (2000). Is a joint moment-based cost function associated with preferred cycling cadence? Journal of Biomechanics, 33(2), 173-180.
    McCoy, Raymond W, & Gregor, RJ. (1989). The effect of varying seat position on knee loads during cycling. Medicine & Science in Sports & Exercise, 21(2), S79.
    Mellion, Morris B. (1991). Common cycling injuries. Sports Medicine, 11(1), 52-70.
    Merletti, Roberto, Knaflitz, Marco, & De Luca, CARLO J. (1990). Myoelectric manifestations of fatigue in voluntary and electrically elicited contractions. Journal of Applied Physiology, 69(5), 1810-1820.
    Merletti, Roberto, & Lo Conte, Loredana R. (1997). Surface EMG signal processing during isometric contractions. Journal of Electromyography and Kinesiology, 7(4), 241-250.
    Moritani, Toshio, Muro, Masuo, & Nagata, Akira. (1986). Intramuscular and surface electromyogram changes during muscle fatigue. Journal of Applied Physiology, 60(4), 1179-1185.
    Mornieux, G, Stapelfeldt, B, Gollhofer, A, & Belli, A. (2008). Effects of pedal type and pull-up action during cycling. International Journal of Sports Medicine, 29(10), 817-822.
    Mornieux, Guillaume, Guenette, Jordan A, Sheel, A William, & Sanderson, David J. (2007). Influence of cadence, power output and hypoxia on the joint moment distribution during cycling. European Journal of Applied Physiology, 102(1), 11-18.
    Neptune, RR, & Herzog, W. (1999). The association between negative muscle work and pedaling rate. Journal of Biomechanics, 32(10), 1021-1026.
    Neptune, RR, & Kautz, SA. (2000). Knee joint loading in forward versus backward pedaling: Implications for rehabilitation strategies. Clinical Biomechanics, 15(7), 528-535.
    Ng, JK-F, Richardson, CA, Kippers, V, Parnianpour, M, & Bui, BH. (1996). Clinical applications of power spectral analysis of electromyographic investigations in muscle function. Manual therapy, 1(2), 99-103.
    Nordeen-Snyder, KATHERINE S. (1977). The effect of bicycle seat height variation upon oxygen consumption and lower limb kinematics. Medicine & Science in Sports & Exercise, 9(2), 113-117.
    Pääsuke, M, Ereline, J, & Gapeyeva, H. (1999). Neuromuscular fatigue during repeated exhaustive submaximal static contractions of knee extensor muscles in endurance‐trained, power‐trained and untrained men. Acta Physiologica Scandinavica, 166(4), 319-326.
    Paavolainen, L, Nummela, A, Rusko, H, & Häkkinen, K. (1999). Neuromuscular characteristics and fatigue during 10 km running. International Journal of Sports Medicine, 20(08), 516-521.
    Patterson, Robert P, & Moreno, Maria I. (1990). Bicycle pedalling forces as a function of pedalling rate and power output. Medicine & Science in Sports & Exercise, 22(4), 512-516.
    Perotto, A., & Delagi, E.F. (2005). Anatomical guide for the electromyographer: the limbs and trunk: Charles C Thomas Pub Ltd.
    Petrofsky, JS. (1979). Frequency and amplitude analysis of the EMG during exercise on the bicycle ergometer. European Journal of Applied Physiology and Occupational Physiology, 41(1), 1-15.
    Peveler, W, Bishop, P, Smith, J, Richardson, M, & Whitehorn, E. (2005). Comparing methods for setting saddle height in trained cyclists. Journal of Exercise Physiology-online, 8(1), 51-55.
    Peveler, W. W., & Green, J. M. (2011). Effects of saddle height on economy and anaerobic power in well-trained cyclists. Journal of Strength and Conditioning Research, 25(3), 629-633. doi: 10.1519/JSC.0b013e3181d09e60
    Peveler, Will W. (2008). Effects of saddle height on economy in cycling. The Journal of Strength & Conditioning Research, 22(4), 1355-1359.
    Peveler, Will W, Pounders, Josh D, & Bishop, Phillip A. (2007). Effects of saddle height on anaerobic power production in cycling. The Journal of Strength & Conditioning Research, 21(4), 1023-1027.
    Price, D, & Donne, B. (1997). Effect of variation in seat tube angle at different seat heights on submaximal cycling performance in man. Journal of Sports Sciences, 15(4), 395-402.
    Psek, Jady-Ann, & Cafarelli, E. (1993). Behavior of coactive muscles during fatigue. Journal of Applied Physiology, 74(1), 170-175.
    Rankin, Jeffery W, & Neptune, Richard R. (2008). Determination of the optimal seat position that maximizes average crank power: a theoretical study. Paper presented at the Proceedings of the North American Congress on Biomechanics.
    Reiser, RF, Peterson, ML, & Broker, JP. (2002). Influence of hip orientation on Wingate power output and cycling technique. The Journal of Strength & Conditioning Research, 16(4), 556-560.
    Ricard, Mark D, Hills-Meyer, Patrick, Miller, Michael G, & Michael, Timothy J. (2006). The effects of bicycle frame geometry on muscle activation and power during a Wingate anaerobic test. Journal of Sports Science and Medicine, 5(1), 25-32.
    Robertson, D Gordon E. (2004). Research Methods in Biomechanics: Human Kinetics Publishers.
    Roman-Liu, Danuta, Tokarski, Tomasz, & Wójcik, Karina. (2004). Quantitative assessment of upper limb muscle fatigue depending on the conditions of repetitive task load. Journal of Electromyography and Kinesiology, 14(6), 671-682.
    Rossato, M, Bini, RR, Carpes, FP, Diefenthaeler, F, & Moro, ARP. (2008). Cadence and workload effects on pedaling technique of well-trained cyclists. International Journal of Sports Medicine, 29, 746-752.
    Rouffet, D.M., & Hautier, C.A. (2008). EMG normalization to study muscle activation in cycling. Journal of Electromyography and Kinesiology, 18(5), 866-878.
    Ruby, Patricia, Hull, ML, & Hawkins, David. (1992). Three-dimensional knee joint loading during seated cycling. Journal of Biomechanics, 25(1), 41-53.
    Rugg, SG, & Gregor, RJ. (1987). The effect of seat height on muscle lengths, velocities and moment arm lengths during cycling. Journal of Biomechanics, 20(9), 899.
    Salsich, Gretchen B, Ward, Samuel R, Terk, Michael R, & Powers, Christopher M. (2003). In vivo assessment of patellofemoral joint contact area in individuals who are pain free. Clinical Orthopaedics and Related Research, 417, 277-284.
    Sanderson, David J. (1991). The influence of cadence and power output on the biomechanics of force application during steady‐rate cycling in competitive and recreational cyclists. Journal of Sports Sciences, 9(2), 191-203.
    Sanderson, David J, & Amoroso, Annita T. (2009). The influence of seat height on the mechanical function of the triceps surae muscles during steady-rate cycling. Journal of Electromyography and Kinesiology, 19(6), e465-e471.
    Sanderson, David J, & Black, Alec. (2003). The effect of prolonged cycling on pedal forces. Journal of Sports Sciences, 21(3), 191-199.
    Sanderson, David J, Martin, PE, Honeyman, G, & Keefer, J. (2006). Gastrocnemius and soleus muscle length, velocity, and EMG responses to changes in pedalling cadence. Journal of Electromyography and Kinesiology, 16(6), 642-649.
    Sarre, G, & Lepers, R. (2005). Neuromuscular function during prolonged pedalling exercise at different cadences. Acta Physiologica Scandinavica, 185(4), 321-328.
    Saunders, Michael J, Evans, Ellen M, Arngrimsson, Sigurbjorn A, Allison, Jerry D, Warren, Gordon L, & Cureton, Kirk J. (2000). Muscle activation and the slow component rise in oxygen uptake during cycling. Medicine & Science in Sports & Exercise, 32(12), 2040-2045.
    Savelberg, Hans Hcm, Van de Port, Ingrid Gl, & Willems, Paul Jb. (2003). Body configuration in cycling affects muscle recruitment and movement pattern. Journal of Applied Biomechanics, 19(4).
    Shennum, Paul Lawrence, & DeVries, HA. (1976). The effect of saddle height on oxygen consumption during bicycle ergometer work. Medicine and Science in Sports, 8(2), 119.
    Silberman, Marc R, Webner, David, Collina, Steven, & Shiple, Brian J. (2005). Road bicycle fit. Clinical Journal of Sport Medicine, 15(4), 271-276.
    Solomonow, Moshe, Baten, Chris, Smit, Jos, Baratta, Richard, Hermens, Hermie, D'Ambrosia, Robert, & Shoji, Hiromu. (1990). Electromyogram power spectra frequencies associated with motor unit recruitment strategies. Journal of Applied Physiology, 68(3), 1177-1185.
    Takaishi, Tetsuo, Yamamoto, Takashi, Ono, Takashi, Ito, Tomonori, & Moritani, Toshio. (1998). Neuromuscular, metabolic, and kinetic adaptations for skilled pedaling performance in cyclists. Medicine & Science in Sports & Exercise, 30(3), 442-449.
    Tamborindeguy, Aline Cavalheiro, & Rico Bini, Rodrigo. (2011). Does saddle height affect patellofemoral and tibiofemoral forces during bicycling for rehabilitation? Journal of Bodywork and Movement Therapies, 15(2), 186-191.
    van Dieën, Jaap H, van der Burg, Petra, Raaijmakers, Tamara AJ, & Toussaint, Huub M. (1998). Effects of repetitive lifting on kinematics: Inadequate anticipatory control or adaptive changes? Journal of Motor Behavior, 30(1), 20-32.
    van Ingen Schenau, GJ, Boots, PJM, De Groot, G, Snackers, RJ, & Van Woensel, WWLM. (1992). The constrained control of force and position in multi-joint movements. Neuroscience, 46(1), 197-207.
    von Tscharner, Vinzenz. (2002). Time–frequency and principal-component methods for the analysis of EMGs recorded during a mildly fatiguing exercise on a cycle ergometer. Journal of Electromyography and Kinesiology, 12(6), 479-492.
    Wanich, Tony, Hodgkins, Christopher, Columbier, Jean-Allain, Muraski, Erika, & Kennedy, John G. (2007). Cycling injuries of the lower extremity. Journal of the American Academy of Orthopaedic Surgeons, 15(12), 748-756.
    Wilber, CA, Holland, GJ, Madison, RE, & Loy, SF. (1995). An epidemiological analysis of overuse injuries among recreational cyclists. International Journal of Sports Medicine, 16(03), 201-206.
    Wolchok, Jeffrey C, Hull, ML, & Howell, Stephen M. (1998). The effect of intersegmental knee moments on patellofemoral contact mechanics in cycling. Journal of Biomechanics, 31(8), 677-683.
    Zameziati, Karim, Mornieux, Guillaume, Rouffet, David, & Belli, Alain. (2006). Relationship between the increase of effectiveness indexes and the increase of muscular efficiency with cycling power. European Journal of Applied Physiology, 96(3), 274-281.

    QR CODE