簡易檢索 / 詳目顯示

研究生: 李宗龍
Tsung-Lung Li
論文名稱: 類神經網路解正定矩陣所有特徵值及相對應於最大特徵值的一組特徵向量
Solving Eigenvalues and the Eigenvector Corresponding to the Largest Eigenvalue of a Positive Definite Matrix Using Neural Networks
指導教授: 林順喜
Lin, Shun-Shii
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 1999
畢業學年度: 87
語文別: 中文
論文頁數: 60
中文關鍵詞: 正定矩陣特徵值特徵向量類神經網路
英文關鍵詞: positive definite matrix, eigenvalue, eigenvector, neural network
論文種類: 學術論文
相關次數: 點閱:322下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正定矩陣的特徵值分解問題在即時訊號處理系統中常扮演舉足輕重的角色,為了即時處理訊號源,我們必須在有限的時間內將特徵值與相對應
    的特徵向量求出,循序演算法中這樣的計算複雜度需要O(n^4)時間,對
    於即時系統來說,明顯地太過耗時,無法滿足系統的需求。在本論文中,
    我們將提出一個以類神經網路為架構的平行計算模型,能有效並迅速地
    將任意正定矩陣的所有特徵值與相對應於最大特徵值的一組特徵向量求
    出,只需要O(n*(log n + m))的時間複雜度與O(n^3)個類神經元與連結
    線即可完成所有的運算(n表示正定矩陣的大小為n*n;m表示系統收斂所
    需的時脈次數)。

    In the areas of real-time signal processing, it's important to
    solve the eigenvalue decomposition problem of a positive defi-
    nite matrix. For processing the signal in time, we must derive
    the eigenvalues and eigenvectors in fixed units of time. This
    problem can be solved by a sequential algorithm in O(n^4) time,
    but this takes too long time for a real-time system to satisfy
    the requirement. In this paper, we will propose a parallel sch-
    eme that can solve all eigenvalues and the eigenvector corres-
    ponding to the largest eigenvalue of a positive definite matrix
    on the neural networks in O(n(log n + m)) time by using O(n^3)
    neurons and O(n^3) links, where the size of the matrix is n*n
    and the number of time clocks for the system to be convergent
    is m.

    第一章 緒論(1) 第二章 文獻探討(4) 第一節 類神經網路的計算模型(4) 第二節 Chen和Hsieh的類神經排序網路(8) 第三節 Luo的即時系統解正定矩陣的最大特徵值與特徵向量(12) 第三章 類神經網路元件設計(16) 第四章 解特徵值之類神經網路設計與理論分析(28) 第一節 代數學的基本定義與定理(28) 第二節 網路的設計(31) 第三節 系統穩定及收斂之理論分析(37) 第五章 本系統的模擬與結果分析(45) 第一節 程式的模擬(45) 第二節 複雜度的分析(50) 第三節 系統效能的評估(52) 第六章 結論(54) 第七章 參考資料(57)

    [1] Z. Bai and J. Demmel, Design of parallel nonsymmetric
    eigenroutine Toolbox, Part I, Research report 92-09,
    university of Kentucky, Lexington, KY, (1992).
    [2] A. N. Beavers, JR. and E. D. Denman, A computational method
    for eigenvalues and eigenvectors of a matrix with real
    eigenvalues, Numer. Math., 21 (1973), pp. 389-396.
    [3] M. Berry and A. Sameh, Parallel algorithms for the singular
    value and dense symmetric eigenvalue problem, J. Comput.
    Appl. Math., 27 (1989), pp. 191-213.
    [4] R. L. Burden and J. D. Faires, Numerical analysis,
    Brooks/Cole Publishing Company, (1997).
    [5] W. Chen and K. Hsieh, A neural sorting network with O(1)
    time complexity, Information Processing Latters, 45 (1993),
    pp. 309-313.
    [6] T. H. Cormen, C. E. Leiserson and R. L. Rivest,
    Introduction to algorithms, McGraw-Hill Book Company,
    (1989).
    [7] J. J. M. Cuppen, A divide and conquer method for the
    symmetric tridiagonal eigenproblem, Number. Math., 36
    (1981), pp. 1204-1245.
    [8] E. D. Denman and A. N. Beavers, JR., The matrix sign
    function and computations in systems, Appl. Math. Comput.,
    2 (1976), pp. 63-94.
    [9] E. D. Denman and J. Leyva-Ramos, Spectral decomposition of
    a matrix using the generalized sign matrix, Appl. Math.
    Comput., 8 (1981), pp. 237-250.
    [10] J. Demmel and K. Veselic, Jacobi’s method is more
    accurate than QR, SIAM J. Matrix Anal. Appl., 13 (1992),
    pp. 1204-1245.
    [11] J. Dongarra and D. Sorensen, A fully parallel algorithm
    for the symmetric eigenvalue problem, SIAM J. Sci.
    Statist. Comput., 8 (1987), pp. 139-154.
    [12] P. Foldiak, Adaptive network for optimal linear feature
    extraction, IJCNN, Washington DC, (1989), pp. I401-I406.
    [13] J. W. R. Griffiths, Adaptive array processing, a tutorial,
    IEE Proc., 130 (1983), pp. 3-10.
    [14] Y. Huo and R. Schreiber, Efficient massively parallel
    eigenvalue computation, Internat. J. Supercomput., 7
    (1993), pp. 292-303.
    [15] J. L. Howland, The sign matrix and the separation of
    matrix eigenvalues, Linear Algebra, 49 (1983), pp. 221-232.
    [16] I. Ipsen and E. Jessup, Improving the accuracy of inverse
    iteration, SIAM J. Sci. Statist. Comput., 13 (1992), pp.
    550-572.
    [17] I. Ipsen and E. Jessup, Solving the symmetric tridiagonal
    eigenvalue problem on the hypercube, Tech. report RR-548,
    Yale University, New Haven, CT, (1987).
    [18] S.M. Kay, Modern spectrum estimation: Theory and
    Application (Prentice Hall, Englewood Cliffs, NJ).
    [19] R. Klemn, Adaptive airborne MTI an auxiliary channel
    approach, IEE Proc., Part F, 134 (1987), pp. 269-276.
    [20] S. Y. Kung, Adaptive principal component analysis via an
    orthogonal learning network, Proc. ISCAS’90, New Orleans,
    (1990).
    [21] S. Y. Kung and K. I. Diamantars, A neural network learning
    algorithm for APEX, Proc. ICASSP’90, (1990), pp. 861-864.
    [22] I. D. Lau, Linear algebra, Best-Wise, (1995).
    [23] C.-C. Lin and E. Zmijewski, A parallel algorithm for
    computing the eigenvalues of an unsymmetric matrix on a
    SIMD mesh of processors, Tech. report TRCS 91-15,
    Department of Computer Science, University of California,
    Santa Barbara, CA, (1991).
    [24] S. S. Lin and S. H. Hsu, A low-cost neural sorting network
    with O(1) time complexity, Neurocomputing, 14 (1997), pp.
    289-299.
    [25] F.-L. Luo. and Y.-D. Li, Real-time neural computation of
    eigenvector corresponding to the largest eigenvalue of
    positive matrix, Neurocomputing, 7 (1995), pp. 145-157.
    [26] C. Mead, Analog VLSI and neural systems, Addison-Wesley,
    Reading, MA, (1989).
    [27] E. Oja, A simplified neuron model as a principal
    component analyzer, J. Math. Biol., 15 (1982), pp. 267-273.
    [28] J. Rutter, A serial implementation of Cuppen’s divide and
    conquer algorithm for the symmetric eigenvalue problem,
    Tech. report UCB/CSD 94/799, University of California,
    Berkeley, California, (1994).
    [29] T. D. Sanger, An optimally principal for unsupervised
    learning, D. S. Touretzky, ed., Advances in Neural
    Information Processing Systems, 1 (1989), pp. 11-19.
    [30] R.O. Schmidt, Multiple emitter location and signal
    parameter estimation, IEEE Trans., (1986), pp. 276-280.
    [31] R. Schreiber, Solving eigenvalue and singular value
    problems on an undersized systolic array, SIAM J. Sci.
    Statist. Comput., 7 (1986), pp. 441-451.
    [32] G. Shroff and R. Schreiber, On the convergence of the
    cyclic Jacobi method for parallel block orderings, SIAM J.
    Sci. Statist. Comput., 6 (1985), pp. 853-864.
    [33] Y. H. Tseng, High-order neural networks and it's
    applications, The Department of Computer Science and
    Information Engineering, National Taiwan University,
    (1993), pp. 16-23.
    [34] B. Widrow, Adaptive signal processing (Prentice Hall,
    Englewood Cliffs, NJ).
    [35] T. Y. Li, Z. Zeng, and L. Cong, Solving eigenvalue
    problems of real nonsymmetric matrices with real
    homotopies, SIAM J. Numer. Anal., 29 (1992), pp. 229-248.
    [36] H. Zhang, T.-Y. Li, and X.-H. Sun, Parallel homotopy
    algorithm for symmetric tridiagonal eigenvalue problems,
    SIAM J. Sci. Statist. Comput., 12 (1991), pp. 469-487.

    無法下載圖示
    QR CODE