簡易檢索 / 詳目顯示

研究生: 黃繹蓁
論文名稱: 鐵磁薄膜居禮溫度變動的研究
指導教授: 沈青嵩
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 107
中文關鍵詞: 居禮溫度磁性
英文關鍵詞: curie temperature
論文種類: 學術論文
相關次數: 點閱:285下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
我們以磁光柯爾效應儀(SMOKE)對超薄膜進行磁性的探討,由實驗室之前的研究以經知道1 ML Co / Pt (111)、 2 ML Co / Pt (111)、1 ML Co / 1 ML Ni / Pt (111)、1 ML Ni / 1 ML Co / Pt (111)這四種樣品的結構與磁性變化,而我們實驗主要的研究課題為,這四種樣品在不同的退火溫度下,其居禮溫度的變動為何?
1 ML Co / Pt (111)、 2 ML Co / Pt (111)這兩樣品,隨著溫度的升高因為Co、Pt原子d軌道電子混雜與Co-Pt合金的形成,造成垂直磁異向性增強的現象。
我們發現這四種樣品在不同的溫度退火20分鐘後,其居禮溫度皆隨著溫度的升高而降低,而且隨著樣品厚度的增加,相對應的居禮溫度也較高。這四種樣品在經過升溫退火效應後,因為合金的形成,使得其磁性與未升溫前的樣品不相同。另外我們也發現這四種樣品在不同溫度退火20分鐘後,在將溫的過程中,其矯頑磁場與樣品溫度的關係曲線有一特殊的趨勢,也就是Hc隨著溫度有階梯狀現象的下降。
由實驗室之前的研究,我們知道1 ML Co / Pt (111)樣品易軸方向為垂直樣品表面,而Ni原子鍍在Pt(111)上時在4 ML以內是測不出磁滯曲線的,也就是說這兩種原子鍍在Pt (111)上因為介面的不同所以磁性也不相同,1 ML Ni / 1 ML Co / Pt (111)樣品因為與基底接觸的介面為Co原子,所以剛準備好樣品時可以測量到磁性,甚至因為鍍了1 ML的Ni造成磁性比1 ML Co / Pt (111)樣品還強的現象,而1 ML Co / 1 ML Ni / Pt (111)樣品與基底接觸的介面為Ni原子,所以樣品的磁性受到Ni原子主導,剛準備好的樣品是測不出磁性的,雖然Co、Ni原子皆在相同的溫度先混合,也在相同的溫度往Pt基底擴散,但是由我們的實驗結果卻發現,這兩樣品在相同的退火溫度下,因為Co原子喜歡和Pt原子接觸在一起,所以兩樣品中Co、Ni原子行為不同造成其居禮溫度的差異。
由以上磁性與居禮溫度的測量,我們知道Co、Ni原子對磁性造成的影響,而樣品隨著退火溫度的改變其居禮溫度的變化,希望對於磁光記憶材料的研究有很大的幫助。

目錄 第一章 緒論 ……………………………………………………………………….1 第二章 基本原理 ………………………………………………………………….3 2.1 薄膜成長 ……………………………………………………………...….3 2.1.1 成長模式 ………………………………………………………….4 2.1.2 影響薄膜成長的因素 …………………………………………….4 2.2 磁性物質 …………………………………………………………….…...5 2.2.1 磁性物質的種類 ………………………………………………….5 2.2.2 鐵磁性( ferromagnetism ) …………………………………….…...8 2.2.3 居里溫度( Curie temperature ) …………………………………….9 2.3 磁異向性( magnetic anisotropy ) ………………………………………..11 2.3.1 磁異向能( anisotropic energy ) …………………………………..11 2.3.2 影響磁異向性的因素 …………………………………………...13 第三章 實驗儀器與原理 ………………………………………………………...17 3.1 超高真空系統(Ultra-high Vacuum UHV) …………………………..17 3.1.1 為何需要超高真空 ………………………………………….…..18 3.1.2 超高真空腔與抽氣系統 …………………………………….…..20 3.1.3 樣品清潔與升降溫 ……………………………………………...21 3.1.4 蒸鍍系統 ………………………………………………………...23 3.1.5 壓力測量系統 …………………………………………………...24 3.2 歐傑電子能譜術(Auger Electron Spectroscopy)…………………….24 3.2.1 歐傑效應 ………………………………………………………...24 3.2.2 歐傑電子能譜 …………………………………………………...26 3.2.3 阻滯電場分析儀 ………………………………………………...27 3.2.4 歐傑電子能譜術的應用 ………………………………………...29 3.3 低能量電子繞射儀 ………………………………………………….….32 3.3.1 LEED的基本原理 ………………………………………………32 3.3.2 RFA-LEED工作原理 ……………………………………………33 3.4 表面磁光柯爾效應 ……………………………………………………..35 3.4.1 MOKE理論 ……………………………………………………..35 3.4.2 MOKE測量原理 ………………………………………………..36 3.4.3 MOKE儀器裝置 ………………………………………………..38 第四章 實驗結果與討論 ………………………………………………………...41 4.1 樣品準備 ………………………………………………………………..41 4.1.1 Co鍍源的刻度 …………………………………………………..41 4.1.2 Ni鍍源的刻度 …………………………………………………...42 4.2 1 ML Co / Pt(111)超薄膜的磁性探討 ………………………………42 4.2.1 1 ML Co / Pt(111)成長模式與結構變化 ………………….…42 4.2.2 1 ML Co / Pt(111)磁性探討與研究 ………………………….43 4.2.3 1 ML Co / Pt(111)居禮溫度的變化 ………………………….47 4.3 2 ML Co / Pt(111)超薄膜的磁性探討 ………………………………56 4.3.1 2 ML Co / Pt(111)成長模式與結構變化 ……………………56 4.3.2 2 ML Co / Pt(111)磁性探討與研究 ………………………….57 4.3.3 1 ML Co / Pt(111)居禮溫度的變化 ………………………….61 4.4 1 ML Ni / 1 ML Co / Pt (111) 超薄膜的磁性探討 …………………….69 4.4.1 1 ML Ni / 1 ML Co / Pt (111) 成長模式與結構變化 …………..69 4.4.2 1 ML Ni / 1 ML Co / Pt (111) 磁性探討與研究 ………………..70 4.4.3 1 ML Ni / 1 ML Co / Pt (111) 居禮溫度的變化 ………………..75 4.5 1 ML Co / 1 ML Ni / Pt (111) 超薄膜的磁性探討 …………………….83 4.5.1 1 ML Co / 1 ML Ni / Pt (111) 成長模式與結構變化 …………..83 4.5.2 1 ML Co / 1 ML Ni / Pt (111) 磁性探討與研究 ………………..84 4.5.3 1 ML Co / 1 ML Ni / Pt(111)居禮溫度的變化 …………………88 4.6 1 ML Co / 1 ML Ni / Pt (111) 與1 ML Ni / 1 ML Co / Pt (111) 兩樣品居禮溫度之探討…………………………………………………………….95 第五章 結論 …………………………………………………………………….101 參考資料 ………………………………………………………………………….104

參考資料
1. W. B. Zeper and F. J. A. M. Greidanus, J. Appl. Phys., 65, 497 (1989)
2. C. H. Lee, H. He and W. Vavara, Phys. Rev. Lett., 62, 653 (1989)
3. D. Pescia, G. Zampieri and G. L. Bona, Phys. Rev. Lett., 58, 933 (1987)
4. N. C. Koon and B. T. Jonker, Phys. Rev. Lett., 59, 2463 (1987)
5. L. Argile and G.E. Rhead, Surf. Sci. Rep. 10, 277 (1989)
6. E. Bauer, Appl. Surf. Sci. 11/12, 479 (1982)
7. B. Dodson, Phys. Rev. B36, 6288 (1987)
8. R. Shimizu, Jap. J. Appl. Phys. 22, 1631 (1983)
9. M. Farle, W. A. Lewis, and K. Baberschke, Appl. Phys. Lett. 62, 2728(1993)
10. S. D. Bader, J. Magn. Magn. Mater. 100, 440 (1991)
11. R. Lawerence Comstock, “Introduction to Magnetism and magnetic Recording” (1999)
12. Ching-Ray Chang and D. R. Fredkin, J. Appl. Physw. 63, 3435 (1988)
13. J. A. C Bland, B. Heinrich(Eds), “Ultrathin Magnetic Structures Ⅰ”, 66-68 (1994)
14. H. J. G. Draaisma, W. J. M. de Jonge, J. Appl. Phys. 64, 3610 (1988)
15. L. Nel, J. de Phys. Et le Rad. 15 (1954) 225
16. J.H. Van Vleck, Phys. Rev. B 52 (1937) 1178
17. B. Heinrich and J. A. C. Bland “Ultrathin Magnetic structures Ⅰ” Ch2
18. “真空技術與應用”, 行政院國家科學委員會精密儀器發展中心
19. John C.Vickerman, Surface Analysis – The Principal Techniques (1997)
20. D. Chattarji, “The Theory of Auger Transitions”, London: Academic Press(1976)
21. D. Briggs and M. P. Seah, “Practical Surface Analysis 2nd “ (1990)
22. Lawerence E. Davis, Noel C. MacDonald, Paul W. Palmberg, Gerald E. Riach and Roland E. Weber, “Handbook of Auger Electron Spectroscopy” (1978)
23. D. Briggs and M. P. Seah, “Practical Surface Analysis 2nd “ (1990)
24. M. P. Seah, J. Vac. Sci. Technol., 17, 16 (1980)
25. R. Shimizu. Jap. J. Appl. Phys. 22, 1631 (1983)
26. S. Tanuma, C. J. Powell and D. R. Penn, Surf. Interface Anal. 25, 25(1997)
27. 盧志權,儀器總覽—表面分析儀器,50 (1998)
28. Z. Q. Qiu, J. Pearson and S.D. Bader, Phys. Rev. B45, 7211 (1992)
29. J. S. Tsay and C. S. Shern, Surf. Sci., 396, 319 (1998)
30. P. Grutter, U. T. Barrett, R. Belkhou, C. Guillot and H. Koundi, J. Phys. condens. matter (1994)
31. P. Grutter and U. T. During, Phys. Rev. B 49, 2021(1994)
32. C. S. Shern, J. S. Tsay, H.Y. Her,Y. E. Wu, R. H. Chen, Surf. Sci, L497-L502, 429(1999)
33. J. S. Tasy, C. S. shern, J. Appl. Phys. 80, 3777 (1996)
34. M. –T. Lin, H. Y. Her, Y. E. Wu, C. S. Shern, J. W. Ho, C. C. Kuo, H. L. Huang, J. Magn. Magn. Mater. 209, 211(2000)
35. J. S. Tasy, C. S. Shern, Surf. Sci. 396, 313 (1998)
36. M. –T. Lin, C. C. Kuo, J. W. Ho, Y. E. Wu, H. Y. Her, C. S. Shern, H. L. Huang, Appl. Surf. Sci. 169-170, 131 (2001)
37. D. Weller, Y. Wu, J. Stőhr, M. G. Samant, B. D. Hermsmeier and C. Chappert, Phys. Rev. B49, 12888 (1994)
38. N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, A. Fujimori, K. Iio, T. Katayama, M. Nvly and Y. Suzuki, Phys. Rev. Lett. 81, 5229(1998)
39. M. –T. Lin, C. C. Kuo, H. Y. Her, Y. E. Wu, J. S. Tsay, and C. S. Shern, J. Vac. Sci.Technol. A 17(5), 3045(1999)
40. Y. Wu, J. Stőhr, B. D. Hermsmeier, M. G. Samant and D. Weller, Phys. Rev. Lett. 69, 2307 (1992)
41. T. Koide, T. Shidara, K. Yamaguchi, A. Fujimori, H. Fukutani, N. Nakajima, T. Sugimoto, T. Katayama and Y. Suzuki, Phys. Rev. B53, 8219 (1996)
42. Shigeru Shiomi et al. , Jap. J. Appl. Phys. 35, L213 (1996)
43. F. D’Orazio, F. Lucari, G. Gubbiotti and M. De Crescenzi, J. Magn. Magn. Mater. 198-199, 369 (1999)
44. Tao Pan, Geoffrey W. D. Spratt, Li Tang, Li-Lien Lee and Yongchang Feng, J. Appl. Phys. 81, 3952 (1997)
45. J. Crangle, Philos. Mag. 46, 499(1955)
46. Charles Kittel, ‘Introduction to Solid State physics’, 7 th edition
47. Renjun Zhang and Roy F. Willis, Phys. Rev. Lett. 86, 2665(2001)
48. C. C. Kuo, C. L. Chiu, W. C. Lin, Minn- Tsong Lin, Surf. Sci. 520, 121(2002)
49. John C. Vickerman, “Surface Analysis- The Principle Technique”, p 121.
50. G. Garreau, M. Farle, E. Beaurepaire, K. Baberschke, Phys. Rev. B 55, 330(1997)
51. C. M. Schneider, P. Bressler, P. Schuster, J. Kirschner, J. J. de Miguel and R. Miranda, Phys. Rev. Lett. 64, 1059(1990)
52. M. Farle, K. baberschke, U. Stetter, A Aapelmeier and F, Gerhardter, Phys. Rev. B47, 11571(1993)
53. C. A. Ballentine, R. L. Fink, J. Araya-Pochet, and J. L. Erskine, Phys. Rev. B 41, 2631(1990)
54. Yi Li and K. Baberschke, Phys. Rev. Lett. 68, 1208 (1992)
55. C. Liu and S. d. Bader, J. Appl. Phys. 67, 5758 (1990)
56. Arti Kashyap and K. B. Garg, A. K. Solanki, T. Nautiyal and S. Auluck, Phys. Rev. B 60, 2262 (1999)
57. C. S. Shern, H. Y. ho, and S. H. Lin, Phys. Rev. B 70, 214438 (2004)
58. 林思宏, 師大物理系碩士論文 (2003)
59. M Seddaat, M Tessier, R Krishnan, H Lassri, S Visnovsky, S K Kulkarni and M Vedpathak, J. Phys. D:Appl. Phys. 33 , 1662 (2000)
60. Jian Zhou, Defang Shen, Zhiqiang Zou, Bin Ma, Shiyong Liu, Lixing Yang, Song you Wang, Shihu Sun, Yuxiang Zheng, Liangyao Chen, Jinglian Wang, Phys. Lett A 207, 115 (2000)
61. S. T. Bramwell, P. C. W. Holdsworth, J. Phys.:Condens. Matter 5, L53 (1993)
62. R. P. Erickson and D. L. Mills, Phys. Rev. B 43, 11527 (1991)
63. F. J. A. den Broeder, E. Janssen, W. hoving and W. B. Zeper, IEEE Transaction on Magnetics 28,2760 (1992)
64. C. W. Su, H. Y. Ho, C. S. Shern, R. H. Chen, Surf. Sci. 499, 103 (2002)
65. Mauro Sambi, Erica Pin, Gaetano Granozzi, Surf. Sci. 340, 215 (1995)
66. 林元祥, 師大物理系碩士論文 (2005)
67. S. K. Kim, J. R. Jeong, B. Kortright, and S, C. Shin, Phys. Rev. B 64, 052406(2001)
68. Sang-Koog Kim, Jong-Ryul Jeong, J. B. Kortright, and Sung-Chul Shin, Phys. Rev. B 64, 052406 (2001)
69. L Wang, J Ding, A Roy, J Ghose, Y Li and Y P Feng, J. Phys.:Condens. Matter12, 9963 (2000)
70. A. B. Chizhik, S. L. Gnatchenko, and D. N. Merenkov, L. T. Baczwski, A. Wawro, H. Szymczak, H. Gamari-Seale, J. Appl. Phys. 84, 5105(1998)
71. R. Krishnan, H. Lassri, M. Seddat, M. Porte, and M. Tessier, Appl. Phys. Lett. 64, 2312 (1994)
72. G. Srinivas and Sung-Chul Shin, Appl. Phys. Lett. 69, 3086 (1996)
73. S. Hashimoto, J. Appl. Phys. 75, 438 (1994)
74. G. Srinivas, Sung-Chul Shin, Thin Sloid Films 301, 211 (1997)
75. Jorg F. Loffler, Jurg P. Meier, Bernard Doudin, and Jean-Philippe Ansermet, Werner Wanger, Phys. Rev. B 57, 2915 (1998)

QR CODE