簡易檢索 / 詳目顯示

研究生: 林柏成
Lin, Bo-Cheng
論文名稱: 使用機率分布探討量化學習動力的改變
Using Probability Distribution to Quantify Dynamics in Motor Learning
指導教授: 劉有德
Liu, Yeou-Teh
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 36
中文關鍵詞: 運動學習動力系統理論量化學習機率密度方程式
英文關鍵詞: motor learning, dynamical systems theory, quantification in learning, probability density function
DOI URL: https://doi.org/10.6345/NTNU202205127
論文種類: 學術論文
相關次數: 點閱:278下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 緒論:學習的過程大略可以分成兩類:比例式的學習和新協調型態的學習。在新協調型態的學習方面,動力過程會發生質性轉變,使用常態分布的統計假設來處理這種數據,即以平均數、標準差作為呈現學習前後差異的方法,並不盡完善。探討運動學習的研究,應使用合適的函數,量化學習過程的變化。在具有不同偏態及隨機樣貌的各種分布中,伽馬分布根據參數變化,曲線外型具有多樣性,可能較適於作為初步觀察學習過程中動力質性改變的描述方式。目的:根據不同學習類型的學習過程,找出最適合用來描述不同學習階段狀態的分布模式。方法:將比例式與建立協調型態的學習數據,分別使用常態分布、對數常態分布、均勻分布、指數分布、伽馬分布適配學習過程中不同階段的動作表現,並以重複量數二因子變異數分析比較分布模式在不同學習階段數據分布的決定係數。結果:比例式學習僅有模式間達顯著差異,伽馬分布與常態分布大於對數常態分布、指數分布及均勻分布。在新協調型態學習方面,三階段與兩階段的結果都具有交互作用,伽馬分布在初期優於其他分布,而後期伽馬、對數常態與常態分布優於指數與均勻分布,此外伽馬分布與對數常態分布的決定係數在各階段都較優於其它分布模式。結論:伽馬分布在兩種類型的學習,以及在協調型態的三個階段,適配的決定係數都具有比較優勢的效果。

    The learning process can be classified as a scale learning and learning a new coordination pattern. In coordination learning, qualitative changes of coordination patterns in the dynamic processes may occur. In this case, using the assumption of normality concept of statistic (e.g. mean and standard deviation) to represent dataset may not be appropriate and incomplete. Here we investigated the gamma probability density functions as another candidate approach to qualify and quantify the learning process even though the data distribution deviated from normality. The gamma function with different combinations of the parameters (alpha and beta) may form different shapes to capture qualitative changes of performance outcome through learning process, especially in coordination learning. The purpose of this study was to investigate different distribution models (normal, logarithmic normal, exponential and uniform distributions) to fit the data distribution of scale learning and coordination learning in different learning phases from throwing task (50 trials a day for 3 days) and the rollerball task (50 trials a day for 5 days), respectively. Two factors repeated measure ANOVAs were used to compare the coefficient of determination between distribution models and learning phase. There was a significant difference among distribution models in scale learning, the gamma and lognormal distribution had greater coefficients of determination than the others. In coordination learning, both three and two phase groups had interaction between distribution models and learning phases. The post hoc analyses showed that the coefficient of determination of the gamma and lognormal distribution were both significantly greater than the normal, exponential and uniform distributions at the first and transition phases, the gamma, lognormal and normal distribution were significantly greater than the exponential and uniform distributions at the last phase. In conclusion, the gamma function showed superior descriptive power among the models over the learning phase for both types of learning that have a comparative advantage in the results of curve fitting.

    口試委員與系主任簽字之論文通過簽名表..........................i 論文授權書................................................ii 中文摘要.................................................iii 英文摘要..................................................iv 謝誌......................................................v 目次.....................................................vi 圖次.....................................................ix 第一章 緒論................................................1 1.1. 問題背景..............................................1 1.2. 研究目的..............................................2 1.3. 研究限制..............................................2 1.4. 研究重要性............................................3 第二章 文獻探討.............................................4 2.1. 運動學習..............................................4 2.1.1. 時間刻度............................................4 2.1.2. 表現數值............................................5 2.1.3. 學習過程的類型......................................5 2.2. 動力系統理論(Dynamical Systems Theory)................7 2.2.1. 吸引子(attractor)...................................8 2.2.2. 動力分歧............................................9 2.3. 機率密度方程式(Probability Density Function, PDF).....11 2.3.1. 連續均勻分布(Continuous Uniform Distributions).....12 2.3.2. 常態分布(Normal Distributions).....................12 2.3.3. 對數常態分布(Log-normal Distributions).............13 2.3.4. 伽馬分布(Gamma Distributions)......................14 第三章 方法...............................................19 3.1. 數值分析.............................................19 3.1.1. 數據來源...........................................19 3.1.2. 數據適配...........................................19 3.2. 統計檢定.............................................23 第四章 結果...............................................24 4.1. 比例式學習...........................................24 4.2. 協調型態學習.........................................25 4.2.1. 三階段.............................................25 4.2.2. 兩階段.............................................27 第五章 討論...............................................29 5.1. 比例式學習...........................................29 5.2. 協調型態學習.........................................30 5.2.1. 三階段的學習變化....................................30 5.2.2. 兩階段的學習變化....................................30 第六章、結論與建議 .........................................32 引用文獻..................................................33

    林耀豐。(2008)。技能表現的分類與測量。載於劉有德主編,運動技能學習(2-13)。台北市:禾楓書局。

    溫卓謀與劉淑燕。(2008)。理論與觀點。載於劉有德主編,運動技能學習(7-31)。台北市:禾楓書局。

    Abraham, R. H., & Shaw, C. D. (1984). Dynamics: The geometry of behavior. Part 1: Periodic behavior. Santa
    Cruz, CA: Aerial Press.

    Aksoy, H. (2000). Use of gamma distribution in hydrological analysis. Turkish Journal of Engineering and Environmental Sciences, 24(6), 419-428.

    Aldrich, J. (1997). RA Fisher and the making of maximum likelihood 1912-1922. Statistical Science, 12(3), 162-176.

    Casella, George & Berger, Roger L. (2001). Statistical Inference (2nd ed.). Duxbury.

    Cobb, Loren (1978). Stochastic Catastrophe Models and Multimodal Distributions. Behavioral Science, 23, 360–374.

    Cobb, L., Koppstein, P., & Chen, N. H. (1983). Estimation and moment recursion relations for multimodal distributions of the exponential family. Journal of the American Statistical Association, 78(381), 124-130.

    Davids, K., Araújo, D., Hristovski, R., Serre, N. B., Button, C., & Passos, P. (Eds.). (2013). Complex Systems in Sport (Vol. 7). Routledge.

    Freedman, D., & Diaconis, P. (1981). On the histogram as a density estimator: L 2 theory.

    Probability theory and related fields, 57(4), 453-476.
    Green, S.B., & Salkind, N.J. (2003). Using SPSS for windows and macintosh: Analyzing and understanding data (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

    Haken, H., Kelso, J. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological cybernetics, 51(5), 347-356.

    Hancock, P. A., & Newell, K. M. (1985). The movement speed-accuracy relationship in space-time. In Motor Behavior (pp. 153-188). Springer Berlin Heidelberg.

    Hsieh, T. Y., Liu, Y. T., Mayer-Kress, G., & Newell, K. M. (2007). The effect of task constraints on performance distribution. Journal of Sport & Exercise Psychology, 29.

    Hsieh, T. Y., Pacheco, M. M., & Newell, K. M. (2015). Entropy of space–time outcome in a movement speed–accuracy task. Human Movement Science, 44, 201-210.

    Kreyszig, E. (2006). Advanced engineering mathematics (9th ed.). John Wiley & Sons Canada, Limited.

    Kugler, P. N., Shaw, R. E., Vicente, K. J., & Kinsella-Shaw, J. (1991). The role of attractors in the self-organization of intentional systems. Cognition and the symbolic processes: Applied and ecological perspectives, 371-387.

    Kuznetsov, Y. A. (1998). Elements of applied bifurcation theory (2nd ed.). Springer Science & Business Media, 80-81.

    Lai, S. C., Mayer-Kress, G., & Newell, K. M. (2006). Information entropy and the variability of space-time movement error. Journal of Motor Behavior, 38, 451-466

    Lefebvre, M. (2007). Applied probability and statistics. Springer Science & Business Media.

    Liu, Y. T., Chuang, K. L., Newell, K. M. (2015 , June). Examining the intrinsic dynamics: Influence of basketball expertise in learning novel throw task compare to roller ball task. Poster session presented at North American Society for Psychology of Sport and Physical Activity, Portland, OR.

    Liu, Y. T., Mayer-Kress, G., & Newell, K. M. (1999). A piecewise linear, stochastic map model for the sequential trial strategy of discrete timing tasks. Acta Psychologica, 103(1), 207-228.

    Liu, Y. T., Mayer-Kress, G., & Newell, K. M. (2006). Qualitative and quantitative change in the dynamics of motor learning. Journal of Experimental Psychology: Human Perception and Performance, 32(2), 380.

    Liu, Y. T., Luo, Z. Y., Mayer-Kress, G., & Newell, K. M. (2012). Self-organized criticality and learning a new coordination task. Human movement science,31(1), 40-54.

    Liu, Y. T., & Newell, K. M. (2015). S-Shaped motor learning and nonequilibrium phase transitions. Journal of Experimental Psychology: Human Perception and Performance, 41(2), 403.

    Magill, R. A. (1998). Motor learning: Concepts and applications (5th ed.). Madison, WI:
    Brown & Benchmark.

    Newell, K. M. (1991). Motor skill acquisition. Annual review of psychology, 42(1), 213-237.

    Newell, K. M., Liu, Y. T., & Mayer-Kress, G. (2001). Time scales in motor learning and development. Psychological review, 108(1), 57.

    Newell, K. M., & Liu, Y. T. (2012). Functions of learning and the acquisition of motor skills (with reference to sport). The Open Sports Sciences Journal, 5, 17-25.

    Øksendal, Bernt K. (2003). Stochastic Differential Equations: An Introduction with Applications. Berlin: Springer.

    Philip J. Davis. (1959). Leonhard Euler's Integral: A Historical Profile of the Gamma Function: In Memoriam: Milton Abramowitz. American Mathematical Monthly, 849-869.

    Poston, T. (1996). Catastrophe theory and its applications (Vol. 2). Courier Dover Publications

    Schmidt, R. A., & Wrisberg, C. A. (2004). Motor learning and performance.

    Singer, R.N. (1980). Motor learning and human performance (3rd ed.). New York: Macmillan.

    Strogatz, Steven H. (1994), Nonlinear Dynamics and Chaos, Addison Wesley.

    Van Gelder, T. & Port, R. F. (Eds.). (1995). Mind as motion: Explorations in the dynamics of cognition. MIT press.

    Wagenmakers, E. J., Molenaar, P., Grasman, R. P., Hartelman, P. A., & van der Maas, H. L. (2005). Transformation invariant stochastic catastrophe theory. Physica D: Nonlinear Phenomena, 211(3), 263-276.

    下載圖示
    QR CODE