簡易檢索 / 詳目顯示

研究生: 李彥翰
Lee, Yen-Han
論文名稱: 基於主成份分析之DPC基板良率分析暨最佳化
The Principal Component Analysis Based Methods for DPC Substrate Yield Analysis and Optimization
指導教授: 李景峰
Li, Jeen-Fong
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 106
中文關鍵詞: 自動光學檢驗地圖集群分析主成份分析良率分析良率損失
英文關鍵詞: Automated Optical Inspection map, cluster analysis, principal component analysis, yield analysis, yield loss space
DOI URL: http://doi.org/10.6345/THE.NTNU.DIE.009.2018.E01
論文種類: 學術論文
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據 McKinsey&Company指出,由於商業照明市場從傳統照明技術轉換至發光二極體(LED),LED照明的市場需求預計將比去年中、長期的上升更快,其市場規模看起來與2011年的預期相似,由於其價格的快速侵蝕。預計2016年 LED照明市場規模約為370億歐元,2020年為640億歐元。由於市場的競爭激烈,所以有效的提高產品良率及減少成本消耗,對於陶瓷基板工廠為重要指標。產量分析是最重要的項目於陶瓷基板工廠。在新產品開發階段有可能有很多因子會影響產品產量。傳統上,產品良率提升需要幾個學習週期經過來解決產品損失問題。本研究提供一種在較少的學習週期經過中識別產量損失問題的新方法。首先,由主成份分析將自動光學檢驗地圖之缺點分類進行轉換成新的基礎。第二 由計算主成份分析之缺點率及良率損失地圖之集群分析進行分類事件。第三 失效分析樣品之選擇來解決產品良率損失問題。此外,新的良率損失基礎可以用來監控產品改善過程中,所選擇之失效模式之對策有效性。(自動光學檢驗地圖失效模式)

    According to McKinsey&Company , Since the commercial lighting market is on a clear transition path from traditional lighting technologies to the Light Emitting Diode (LED), the share of LED lighting is expected to rise faster than forecast last year in the mid to long term, its market size appears similar to that expected in 2011 due to its accelerated price erosion. The LED lighting market size overall is anticipated to be around EUR 37 billion in 2016 and EUR 64 billion in 2020. Yield analysis is one of the most important topics in ceramic material company. In the early stage of the new process development, several factors will have a greater impact on the yield. Traditionally, several learning cycle iterations are needed to solve the loss of revenue. This study describes a new method for diagnosing loss of earnings in less iterations. Firstly, the fault classification of Automatic optical Inspection (AOI) mapping data is transferred to a new foundation by using principal component analysis. Secondly, the defect rate is calculated, and the original AOI mapping data is reconstructed on the main foundation, which causes the loss of revenue space by Cluster Analysis. Third, we can choose the physical failure analysis sample to solve the output loss problem. In addition, the new loss of revenue base can be used to monitor progress and increase yield measures to reduce the effectiveness of failure modes (AOI mapping failures).

    謝誌 i 摘要 iii Abstract iv Table of Contents v List of Table vii List of Figure viii Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Motivations 5 1.3 Research Objectives 7 1.4 Research Procedures 8 1.5 Research Limitations 10 1.6 Research Framework and Thesis Structures 10 Chapter 2 Literature Review 13 2.1 AOI mapping Data and Mathematical Method 13 2.2 AOI system 28 2.3 Yield analysis 36 Chapter 3 Research Method 41 3.1 PCA Approach 43 3.2 Cluster Analysis 46 3.3 Cluster and Discriminatory Analysis for AOI mapping Failure Patterns 48 Chapter 4 Empirical Study 50 4.1 Traditional Approach Example 50 4.2 AOI Mapping Data Analysis Example 52 4.3 Cluster Analysis and Discriminatory Analysis 58 4.4 PCA with defective rate 81 4.5 Physical Failure Analysis 86 Chapter 5 Discussion and Implementation 100 5.1 Discussion 100 5.2 Implementation 102 Chapter 6 Conclusion 104 Reference 105

    Arunkumar, P., Deshpande, A. S., & Gunjati, S. (2015). Analysis and Optimization of Investment Castings to Reduce Defects and Increase Yield.
    Baumgartner, T. (2012). <Lighting the way Perspectives on global lighting market 2012.pdf> (second ed.): McKinsey&Company.
    Eck, M., Hirsch, T., Feldhoff, J. F., Kretschmann, D., Dersch, J., Morales, A. G., . . . Riffelmann, K.-J. (2014). Guidelines for CSP yield analysis–optical losses of line focusing systems; definitions, sensitivity analysis and modeling approaches. Energy Procedia, 49, 1318-1327.
    Hamada, T., & Sugimoto, M. (1997). Application of a bitmap analysis system to the forefront of DRAM devices development. Paper presented at the Advanced Semiconductor Manufacturing Conference and Workshop, 1997. IEEE/SEMI.
    Horan, J., & Lyden, C. (1998). Rapid IC performance yield and distribution prediction using a rotation of the circuit parameter principals components. Microelectronics Reliability, 38(12), 1913-1918.
    Hsieh, Y.-l., Tzeng, G.-h., Lin, G. T.-R., & Yu, H.-c. (2010). Wafer sort bitmap data analysis using the PCA-based approach for yield analysis and optimization. IEEE Transactions on Semiconductor Manufacturing, 23(4), 493-502.
    Imai, K., & Kaga, T. (2000). A novel filtering method to extract three critical yield loss components (gross, repeated, and random) FIMER. IEEE Transactions on Semiconductor Manufacturing, 13(4), 408-415.
    Kaur, S., & Banga, D. V. K. (2013). Content based image retrieval: Survey and comparison between rgb and hsv model. International Journal of Engineering Trends and Technology, 4(4), 575-579.
    Kumar, T., & Verma, K. (2010). A Theory Based on Conversion of RGB image to Gray image. International Journal of Computer Applications, 7(2), 7-10.
    Nakata, K., Orihara, R., Mizuoka, Y., & Takagi, K. (2017). A Comprehensive Big-Data-Based Monitoring System for Yield Enhancement in Semiconductor Manufacturing. IEEE Transactions on Semiconductor Manufacturing.
    Olawale, F., & Garwe, D. (2010). Obstacles to the growth of new SMEs in South Africa: A principal component analysis approach. African journal of Business management, 4(5), 729.
    Qian, Z., Siegelin, F., Tippelt, B., & Müller, S. (2006). Localization and physical analysis of a complex SRAM failure in 90nm technology. Microelectronics Reliability, 46(9), 1558-1562.
    Schwarz, M. W., Cowan, W. B., & Beatty, J. C. (1987). An experimental comparison of RGB, YIQ, LAB, HSV, and opponent color models. ACM Transactions on Graphics (TOG), 6(2), 123-158.
    Shee, D. Y., & Tzeng, G.-H. (2002). The key dimensions of criteria for the evaluation FNA selection of ISPS: An exploratory study. Journal of Computer Information Systems, 42(4), 112-121.
    Shlens, J. (2014). A tutorial on principal component analysis. arXiv preprint arXiv:1404.1100.
    Sindagi, V. A., & Srivastava, S. (2017). Domain Adaptation for Automatic OLED Panel Defect Detection Using Adaptive Support Vector Data Description. International Journal of Computer Vision, 122(2), 193-211.
    Skinner, K. R., Montgomery, D. C., Runger, G. C., Fowler, J. W., McCarville, D. R., Rhoads, T. R., & Stanley, J. D. (2002). Multivariate statistical methods for modeling and analysis of wafer probe test data. IEEE Transactions on Semiconductor Manufacturing, 15(4), 523-530.
    Smith, L. I. (2002). A tutorial on principal components analysis. Cornell University, USA, 51(52), 65.
    Wang, N., Hsu, A., Lim, A., Tan, J., Lin, C., Ru, H., . . . Liao, D. (2009). High brightness LED assembly using DPC substrate and SuperMCPCB. Paper presented at the 2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference.
    Weber, C. (2004). Yield learning and the sources of profitability in semiconductor manufacturing and process development. IEEE Transactions on Semiconductor Manufacturing, 17(4), 590-596.
    White, D. A., Boning, D., Butler, S. W., & Barna, G. G. (1997). Spatial characterization of wafer state using principal component analysis of optical emission spectra in plasma etch. IEEE Transactions on Semiconductor Manufacturing, 10(1), 52-61.
    Yan, L. (2006). A PCA-based PCM data analyzing method for diagnosing process failures. IEEE Transactions on Semiconductor Manufacturing, 19(4), 404-410.

    無法下載圖示 本全文未授權公開
    QR CODE