研究生: |
蕭淑娟 |
---|---|
論文名稱: |
八年級學生處理線型函數情境問題之解題策略分析 A Study on Eighth-Grade Students’ Strategies for Solving Linear Function Problems |
指導教授: | 左台益 |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 線型函數 、情境 、關係式 、解題策略 |
論文種類: | 學術論文 |
相關次數: | 點閱:161 下載:22 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的主要目的是在於探討學生從從線型函數情境問題中建立關係式的解題策略及解題失敗原因。
研究方法是設計線型函數情境問題之診斷性問卷,以一個八年級班級的29位學生作為研究樣本,先進行問卷測驗,再藉由問卷作答內容作事後訪談,來探討學生處理線型函數情境問題的解題策略及解題失敗原因。
研究結果發現,
一、學生推論情境問題之變化率與起始值,以及計算情境特定值的解題策略可區分成操作圖形物件、比例推理與列聯立方程式。其中學生計算情境特定值的作法與推論變化率的作法較具有一致性。
二、學生建立關係式的解題策略可區分成類似遞迴想法、比例推理及列聯立方程式。學生理解變化率與起始值,能運用比例推理推算情境特定值,但是未必能理解變化率與起始值之代數表徵意義,將兩者轉換為線型函數關係式的參數。
三、解題失敗原因:
1.學生會因為誤解圖形資訊、不理解情境變化率與起始值的意義或誤解情境問題的描述,致使推論變化率與起始值時解題失敗。
2.學生會因為誤解圖形資訊、忽略起始值、變化率與起始值錯誤、關係式錯誤,情境與數量之間產生不適當的對應關係或引用錯誤數量關係等,致使計算情境特定值時解題失敗。
3.學生會因為忽略起始值、引用錯誤的變化率與起始值、情境與數量之間產生不適當的對應關係、或誤解文字符號的意義,致使建立錯誤關係式。
本研究所得到之學生建立線型函數關係式的解題策略及解題失敗原因等,可作為國中線型函數教學設計之參考。
一、 中文部份
丁斌悅(2001)。國二學生學習線型函數的概念表徵發展研究。國立臺灣師範大學數學研究所碩士論文,未出版,臺北市。
林文俊(2002)。線型函數概念在國中數學課程中發展的脈絡。國立臺灣師範大學數學研究所碩士論文,未出版,臺北市。
邱芳津(1990)。國二資優生線型函數概念之研究。國立彰化師範大學科學教育研究所碩士論文,未出版,彰化縣。
邱芳津(1991)。國二資優生線型函數概念之研究。科學教育,2,275-291。
吳依芳(2003)。建模教學活動對國二學生學習線性函數概念之影響。國立臺灣師範大學數學研究所碩士論文,未出版,臺北市。
吳淑琳(2001),國中生線型函數概念發展之個案研究。國立臺灣師範大學數學研究所碩士論文,未出版,臺北市。
南一出版社(2006)。九年一貫國民中學數學教師手冊第二冊[七年級下學期]。台南市,南一出版社。
康軒出版社(2006)。九年一貫國民中學數學教師手冊第二冊[七年級下學期]。臺北市,康軒文教事業股份有限公司。
張菁珊(2004)。台北市國中學生函數概念學習之狀況。國立高雄師範大學數學系碩士論文,未出版,高雄市。
馬秀蘭(2008a)。以van Hiele理論探討圖形樣式思考層次之研究。教育研究集刊,54(1),49-85。
馬秀蘭(2008b)。國小高年級學童解樣式題之代數思考:以線性圖形樣式題為例。科學教育研究與發展季刊,50,32-52。
黃齡慧(2007)。數量樣式教學對國中生學習函數概念之影響。國立臺灣師範大學數學研究所碩士論文,未出版,臺北市。
二、 英文部分
Bardini, C., & Stacey, K. (2006). Students’ conceptions of m and c: How to tune a linear function. In Novotná, J., Moraová, H., Krátká, M. & Stehlíková, N. (Eds.), Proceedings 30th Conference of the International Group for the Psychology of Mathematics Education, Vol. 2 (pp. 113-120). Prague: PME.
Dietmar, K. (2010). Using patterns generically to see structure. Pedagogies: An International Journal, 5(3), 233-250.
Ellis,A.B. (2007). Connections between generalizing and justifying: students’ reasoning with linear relationships. Journal for Research in Mathematics Education, 38(3), 194-229.
Gray, E. M., Tall, D. O. (1994). Duality, ambiguity, and flexibility: a “proceptual” view of simple arithmetic. Journal for Research in Mathematics Education, 25(2), 116-140.
John, L. & David, B. (2006) Algebraic generalisation strategies: Factors in fluencing student strategy selection. Journal for Research in Mathematics Education, 18(3), 3-28.
Kuchemann, D. (1978). Children’s understanding of numerical variables. Mathematics in school, 7(4), (pp. 23-26).
Kuchemann, D.(1981). Algebra. In K. M. Hart (ed.), Children’s understanding of mathehatics: 11-16 (pp. 102-119), London: John Murray.
Lannin, J. & Barker, D. (2006). Algebraic generalisation strategies: Factors influencing student strategy selection. Mathematics Education Research Journal, 18(3) , 3-28
Leinhardt, G., Zaslavsky, O. & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60(1), 1-64.
Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz,C. Kieran, & L. Lee. (Eds.), Approaches to algebra: Perspectives for research and teaching (pp.65-86). Dordrecht, The Netherlands: Kluwer Academic.
National Council of Teachers of Mathematics (2000). Principles and Standards for School Mathematics. Reston, VA: NCTM.
Noss, R. (1997). Meaning mathematically with computers. In Nunes, T., & Bryant, P. (Eds.), Learning and Teaching Mathematics: An International Perspective (pp. 289-314). Hove, UK: Psychology Press.
Noss, R., Healy, L., & Hoyles, C. (1997). The construction of mathematical meanings: Connecting the visual with the symbolic. Educational Studies in Mathematics, 33, 203-233.
Pierce, R., Stacey, K. & Bardini, C. (2001). A framework for algebraic insight. In J. Bobis, B. Perry, & M. Mitchelmore. (Eds), Numeracy and beyond Proceedings of the 24th annual conference of the Mathematics Education Research Group of Australasia (Vol. 2, pp. 418-425). Sydney: Mathematics Education Research Group of Australasia.
Pierce, R. (2005). Linear functions and a triple influence of teaching on the development of students’ algebraic expectation. In Chick, H. L. & Vincent, J. L. (Eds.). Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education, Vol. 4, pp. 81-88. Melbourne: PME.
Pierce, R., Stacey, K. & Bardini, C. (2010). Linear functions: teaching strategies and students' conceptions associated with y = mx + c. Pedagogies: An International Journal, 5(3), 202-215.
Radford, L. (2006). Algebraic thinking and the generalization of patterns: A semiotic perspective. Proceedings of the 28th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education.
Rivera, F. D. & Becker, J. R. (2008). Middle school children’s cognitive perceptions of constructive and deconstructive generalizations involving linear figural patterns. ZDM, 40, 65-82.
Rivera, F. D.(2010). Visual templates in pattern generalization activity. Educational Studies in Mathematics, 73, 297–328
Rubio, G. R., Castillo, A. D., Valle, R. D. & Gallardo, A. (2008). Cognitive tendencies in the process of constructing meanings in numbers, variables and linear functions. Proceedings of the Joint Meeting of the Internacional Group and the North American Chapter of Psychology of Mathematics Education. PME 32, PME-NA XXX. Morelia, Michoacán, Vol 4 pp. 209-216.
Sajka, M. (2003). A secondary school student’s understanding of the concept of function-a case study. Educational Studies in Mathematics, 53, 229–254.
Sierpinska, A. (1992). On understanding the notion of function. In D. Ed, & H. Guershon (Eds.), The Concept of Function: Aspects of Epistemology and Pedagogy (pp. 25-58). Mathematical Association of America.
Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same Coin. Educational Studies in Mathematics, 22, 1-36.
Usiskin, Z. (1988). Conceptions of school algebra and uses of variable. In A. F. Coxford, & A. P. Shulte (Eds.), The ideas of algebra, K–12 (pp. 8-19). Reston: National Council of Teachers of Mathematics.
Yerushalmy, M. (2000). Problem solving strategies and mathematical resources: A longitudinal view on problem solving in a functional based approach to algebra. Educational Studies in Mathematics, 43, 125-147.
Zaslavsky, O. (1997). Conceptual obstacles in the learning of quadratic functions. Focuson learning Problems in Mathematics , 19(1), 20-42.
Zazkis, R., & Liljedahl, P. (2002). Generalization of patterns: The tension between algebraic thinking and algebraic notation. Educational Studies in Mathematics, 49, 379-402.
Zaslavsky, O., Sela, H. & Leron, U. (2002). Being sloppy about slope: The effect of changing the scale. Educational Studies in Mathematics, 49, 119–140.