簡易檢索 / 詳目顯示

研究生: 楊博丞
Yang, Bo-Cheng
論文名稱: 基於蝙蝠演算法之二自由度PID控制器應用於直流–直流轉換器平台
Two-degree-of-freedom PID controllers based on bat algorithm applied to DC – DC converters platform
指導教授: 陳瑄易
Chen, Syuan-Yi
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 62
中文關鍵詞: 數位訊號處理器二自由度PID控制器蝙蝠演算法智慧型控制均流控制升壓/降壓型直流-直流轉換器
英文關鍵詞: Digital Signal Processor, Bat algorithm, Two-degree-of-freedom PID controllers, Intelligent Control, Current-Balancing Control, Buck/Boost Converter
DOI URL: http://doi.org/10.6345/THE.NTNU.DEE.015.2018.E08
論文種類: 學術論文
相關次數: 點閱:259下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以數位信號處理器 DSP TMS320F28335,實現一並聯式升、降壓直流-直流功率轉換器的智慧型控制。首先,以三台直流-直流轉換器並聯,並使用自動主僕均流控制技術,使每台轉換器在電壓有良好的穩壓性能情況下,電流能夠平均分配給三台直流轉換器。然而,轉換器因元件老化導致特性改變、負載變動、電路雜訊及外部干擾等情況下,原廠的控制器參數未能有效的匹配目前的轉換器。為了解決此一困難,本論文開發一個基於蝙蝠演算法之二自由度比例-積分-微分(Two-degree- of-freedom Proportional Integral Derivative, 2DOFPID)控制器,透過蝙蝠演算法(bat algorithm, BA)模擬蝙蝠飛行和狩獵的形式,將所有控制參數當作一個搜索空間中的微蝙蝠,蝙蝠在尋找最佳解的過程中看成是蝙蝠尋找食物的過程,以進行動態優化。從模擬和實驗結果可得知,本論文所提出的蝙蝠演算法之二自由度PID控制器,與傳統單自由度PID控制器及二自由度PID控制器相比,具有最小電壓調整率和最小均流誤差率。

    In this thesis, the digital signal processor DSP TMS320F28335 is used to realize the intelligent control of a parallel Buck/Boost DC-DC converter. First of all, three converters are connected in parallel, and automatic master-slave current-sharing control technology is used, so that each group of converters can be evenly distributed to three converters under the condition that the voltage has good voltage regulation performance. However, the converter's controller parameters fail to match the current converter effectively due to component changes, load changes, circuit noise, and external disturbances due to component aging. In order to solve this difficulty, this thesis develops a two-degree-of-freedom PID (Two-degree-of-freedom Proportional Integral Derivative, 2DOFPID) controller based on bat algorithm (Bat algorithm, BA), Through the bat algorithm to simulate the form of bat flying and hunting, all control parameters are treated as micro-bats in the search space. The bat is seen as the process of bats searching for food in the process of finding the best solution for dynamic optimization. From the simulation and experimental results, the bat algorithm of two-degree-of-freedom PID controller proposed in this paper has the minimum voltage regulation rate and the minimum current sharing error rate compared with the PID controller and the two-degree- of-freedom PID controller.

    摘要 i ABSTRACT ii 誌謝 iv 目錄 v 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 3 1.3 研究目的 6 1.4 研究方法 7 1.5 研究架構 8 第二章 DC-DC轉換器實驗平台介紹 9 2.1 單模組DC-DC升/降壓轉換器介紹 9 2.2 DC-DC轉換器並聯控制架構 15 2.3 實驗平台設計 17 第三章 基於二自由度PID控制之DC-DC轉換器控制系統 25 3.1 升/降壓DC-DC轉換器數學模型 25 3.1.1 單模組降壓模式DC-DC轉換器數學模型 26 3.1.2 升壓模式DC-DC轉換器數學模型 28 3.2 反饋式二自由度PID控制器設計 29 第四章 基於蝙蝠演算法之二自由度PID控制之DC-DC轉換器控制系統 34 4.1 蝙蝠演算法簡介 34 4.2 適應函數選取 34 4.3 二自由度PID參數調整 35 4.4 基於蝙蝠演算法之二自由度PID控制系統 36 第五章 PSIM 平台建模 39 5.1 PSIM電路模擬簡介 39 5.2 2DOFPID控制系統模擬實驗設計 40 5.3 二自由度PID控制系統模擬結果 41 5.4 蝙蝠演算法模擬結果 45 第六章 實驗結果與討論 51 6.1 平台實驗說明 51 6.2 二自由度PID控制實驗結果 52 6.3 基於蝙蝠演算法之2DOFPID控制實驗結果 55 第七章 結論與未來展望 58 7.1 結論 58 7.2 未來展望 58 參考文獻 59 自傳 62

    [1] M. Araki and H. Taguchi, "Two-degree-of-freedom-PID controllers," International Journal of Control ,Automation, and Systems, , vol. 1, no. 4, pp. 401-411, 2003.
    [2] 白東翠,嵌入式二自由度PID控制器的研究,碩士論文,安徽理工大學,中國,2011。
    [3] 江炫樟,電力電子學,全華圖書,2003。
    [4] I. M. Horowitz, Synthesis of Feedback Systems, Academic Press, 1963.
    [5] X.-S. Yang, “A new metaheuristic bat?inspired algorithm,” Proceedings of the workshop on nature inspired cooperative strategies for optimization (NICSO), pp. 65-74, 2010.
    [6] J. G. Ziegler, and N. B. Nichols, “Optimum settings for automatic controllers,” Transactions of the ASME, vol. 64, pp. 759-768, 1942.
    [7] Texas Instruments Inc., “TMS320F2833x, TMS320F2823x Digital Signal Controllers(DSCs), rev B”, 2016.
    [8] 張卿杰,徐友,左楠,卞康君,手把手教你學DSP:基於TMS320F28335,北京航空航天大學出版社,2015。
    [9] 陶永華,新型PID控制及其應用,台灣高等教育出版社,2003。
    [10] PSIM User’s Guide, Powersim Inc, 2016
    [11] SimCoder User’s Guide, Powersim Inc, 2015
    [12] 鄭明憲,具即時監測雙向並聯直流轉換器之研製,碩士論文,國立成功大學電機工程學系,臺南,2005.
    [13] 楊文魁,切換式降壓型DC-DC轉換器之滑動模態控制器設計,碩士論文,國立中興大學電機工程學系,臺中,2002。
    [14] 吳坤佑,順滑控制在降壓型直流轉換器之應用,碩士論文,國立交通大學電機學院電機與控制學程,新竹,1997。
    [15] 賴聖凱,多模組並聯電源轉換器之均流控制設計與實現,碩士論文,國立臺北科技大學電機工程學系,臺北,2012。
    [16] R. K Sahu, S. Panda, U. K. Rout, D. K. Sahoo “Teaching learning based optimization algorithm for automatic generation control of power system using 2-DOF PID controller,” International Journal of Electrical Power and Energy Systems, pp. 287-301, 2016.
    [17] C. H. Cheng, P. J. Cheng, M. J. Xie, “Current sharing of paralleled DC–DC converters using GA-based PID controllers,” International Journal of Expert Systems with Applications, pp. 733-740, 2010.
    [18] X. F. Wang, M. Wu, L. OuYang, Q. Tang, “The Application of GA-PID Control Algorithm to DC-DC Converter,” Proceedings of the 29th Chinese Control Conference, pp. 3492-3496, 2010.
    [19] 呂磊,章國寶,黃永明,基於蝙蝠演算法的PID參數整定,控制工程,vol. 24, no. 3, pp. 548-553,中國,2017.
    [20] V.M. Alfaro, R. Vilanova, and Arrieta , “Robust tuning of Two-Degree -of-Freedom (2-DoF) PI/PID based cascade control systems,” International Journal of Process Control, pp. 1658-1670, 2009.
    [21] 固緯電子實業股份有限公司,PEK-120使用手冊,臺北,2016。
    [22] N. A. Dung, P. P. Hieu, Y.-C. Liu, H.J. Chiu, Y-C. Hsieh, and J.Y. Lin, “A DSP based digital control strategy for ZVS bidirectional Buck+Boost converter,” 2018 3rd International Conference on Intelligent Green Building and Smart Grid (IGBSG), 2018.
    [23] N. A. Dung, P. P. Hieu, Y-C. Hsieh, J.Y. Lin, Y.-C. Liu, and H.J. Chiu, “A novel low-loss control strategy for bidirectional DC–DC converter,” International Journal of Circuit Theory and Applications, vol. 45, pp. 1801-1813, 2017.
    [24] E. Hernandez-Marquez, R. Silva-Ortigoza, S. Hai-Dong, V.H. Garcia-Rodriguez, G. Saldana-Gonzalez, M. Marcelino-Aranda, “A New DC/DC Buck-Boost Converter–DC Motor System: Modeling and Simulation,” IEEE Trans. 2016 International Conference on Mechatronics, Electronics and Automotive Engineering., vol. 21, no. 7, pp. 101-106, 2016

    下載圖示
    QR CODE