研究生: |
鄧伃珊 Teng, Yu-Shan |
---|---|
論文名稱: |
利用CRE motifs報導細胞和Aβ-GFP細胞篩選BDNF受體TRKB的小分子促效劑做為阿茲海默症治療策略 CRE Motifs Reporter and Aβ-GFP Cellular Models to Screen Therapeutic Small Molecule Agonist Drugs Targeting BDNF Receptor TRKB as Treatment Strategy for Alzheimer's Disease |
指導教授: |
李桂楨
Lee, Guey-Jen |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 阿茲海默症 、β-澱粉樣蛋白 、腦源性神經滋養因子 、受體原肌球蛋白受體激酶B促效劑 、細胞模式 |
英文關鍵詞: | Alzheimer’s disease, Amyloid β, BDNF, TRKB agonist, cell model |
DOI URL: | http://doi.org/10.6345/NTNU201901050 |
論文種類: | 學術論文 |
相關次數: | 點閱:243 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
阿茲海默症(Alzheimer's disease, AD),是一種與年齡相關的神經退化性疾病,會逐漸破壞認知功能、記憶和思考能力。腦源性神經滋養因子(Brain-derived neurotrophic factor, BDNF),透過活化高親和力受體--旋轉肌凝蛋白相關蛋白質激酶B (Tropomyosin-related kinase B, TRKB),並隨後磷酸化環磷腺苷效應元件結合蛋白1 (cAMP responsive element binding protein 1, CREB),來調節神經元存活(Neuronal survival)、新生(Neurogenesis)和神經可塑性(Neuroplasticity)。前人的研究發現BDNF和TRKB在AD患者腦中的表現量降低,且Aβ顯著下調BDNF、TRKB水平與降低CREB磷酸化。TRKB促效劑7,8-二羥基黃酮(7,8-Dihydroxyflavone, 7,8-DHF),可改善AD小鼠模型的記憶缺陷。此外,黃芩素(Wogonin)透過增加BDNF和CREB表現,可提升海馬迴神經元缺失和認知功能障礙。這些證據顯示大腦中BDNF-TRKB訊息傳遞與AD的關聯性,因此增強TRKB訊息傳遞是有潛力的AD治療策略。先前本實驗室與本校化學系孫英傑老師合作,透過化合物數據庫的化合物相似性搜索進行虛擬篩選,得到DHFS-1 (即Quercetin)、DHFS-2、Kaempferol、Apigenin等4個7,8-DHF類似物。本研究以7,8-DHF為控制組,檢測Wogonin及這4個類似物作為TRKB促效劑的潛能。首先檢測化合物的溶解度(Solubility),預測化合物的口服生物利用度(Oral bioavailability)、中樞神經系統有效性(CNS-activity)與血腦屏障通透性(Blood brain barrier permeability),並檢測化合物捕捉自由基和抑制Aβ聚集的能力。之後建立人類CRE motifs驅動GFP表現的293報導細胞,由上述6個化合物中篩選出能顯著提升CREB轉錄活性的7,8-DHF、DHFS-1、DHFS-2、Apigenin。再利用誘導表現Aβ-GFP的人類SH-SY5Y細胞,檢測所篩選出的潛力TRKB促效劑的神經保護作用。7,8-DHF、DHFS-1、DHFS-2、Apigenin四者皆有抑制Aβ蛋白聚集、降低活性氧化物(ROS)以及促進神經突生長(Neurite outgrowth)之能力。四者中DHFS-1、DHFS-2、Apigenin可抑制凋亡蛋白酶-1 (Caspase-1)的活性,7,8-DHF、Apigenin可抑制乙醯膽鹼脂酶(Acetylcholinesterase)活性。此外,TRKB的RNA干擾(RNAi)作用,會抑制7,8-DHF、DHFS-1、DHFS-2、Apigenin促進神經突生長能力。因此除了已知的7,8-DHF外,DHFS-1、DHFS-2、Apigenin也可能是透過TRKB訊息傳遞來促進神經保護作用。本研究將衍生新穎TRKB促效劑,以期提供阿茲海默症治療策略。
Alzheimer's disease (AD) is an age-related progressive degenerative disorder that slowly destroys cognitive functions, memory, and thinking skills. Brain-derived neurotrophic factor (BDNF) is a member of neurotrophin family of growth factor that regulates neuronal survival, neurogenesis and neuroplasticity by activating the high-affinity tropomyosin-related kinase B (TRKB) receptor and subsequently phosphorylating cAMP responsive element binding protein 1 (CREB). BDNF and TRKB expression levels have been found to be reduced in brains of AD patients. Treatment with oligomeric Aβ also significantly down-regulates BDNF and TRKB expression, and decreases CREB phosphorylation. Systemic administration of TRKB agonist 7,8-dihydroxyflavone (7,8-DHF) improves memory deficits in AD mouse model. In addition, wogonin (an O-methylated flavone) attenuates hippocampal neuronal loss and cognitive dysfunction by increasing BDNF and CREB expression. These lines of evidence indicate deterioration of brain BDNF-TRKB signaling and enhancement of TRKB signaling for a promising AD treatment strategy. Previously our laboratory collaborated with Professor Ying-Chieh Sun from Department of Chemistry, NTNU to develop new TRKB agonists. Four 7,8-DHF analogous compounds, DHFS-1 (quercetin), DHFS-2, kaempferol, and apigenin, were found through virtually screened compound databases using compound similarity search engines. In this study, the potential of wogonin and these four analogous compounds as TRKB agonists were examined, using 7,8-DHF as controls. These compounds were firstly tested for solubility, and predicted for oral bioavailability, central nervous system (CNS)-activity, and blood brain barrier permeability. In addition, free radical scavenging and Aβ aggregation inhibitory activities were examined. Then human 293 reporter cells expressing CRE motifs-driving GFP were established to test these six compounds for enhancing CREB-mediated transcription. Among the tested compounds, 7,8-DHF, DHFS-1, DHFS-2, and apigenin significantly increased the transcriptional activity of CREB. Neuroprotective effects of the potential TRKB agonists were further examined in human SH-SY5Y cells expressing Aβ-GFP. 7,8-DHF, DHFS-1, DHFS-2, and apigenin markedly reduced Aβ aggregation and associated reactive oxygen species (ROS), as well as promoted neurite outgrowth in Tet-On Aβ-GFP SH-SY5Y cells. In addition, DHFS-1, DHFS-2, and apigenin inhibited the caspase 1 activity, and 7,8-DHF and apigenin inhibited acetylcholinesterase activity in Aβ-GFP-expressing SH-SY5Y cells. The neurite outgrowth promotion of 7,8-DHF, DHFS-1, DHFS-2, and apigenin was counteracted by knockdown of TRKB. Therefore, in addition to the known 7,8-DHF, the neuroprotective effects of DHFS-1, DHFS-2, and apigenin may also mediate through TRKB signaling. The study could derive novel TRKB agonists to provide therapeutic strategies in AD.
黃鉦翔. 2012. 以amyloid-β聚集為目標的阿茲海默氏症治療策略。國立臺灣師範大學生命科學系碩士論文。
Alberini, C.M. 2009. Transcription factors in long-term memory and synaptic plasticity. Physiol Rev. 89:121-145.
Allen, S.J., G.K. Wilcock, and D. Dawbarn. 1999. Profound and selective loss of catalytic TrkB immunoreactivity in Alzheimer’s disease. Biochem Biophys Res Commun. 264:648-651.
Almkvist, O., L. Fratiglioni, H. Aguero-Torres, M. Viitanen, and L. Backman. 1999. Cognitive support at episodic encoding and retrieval: similar patterns of utilization in community-based samples of Alzheimer's disease and vascular dementia patients. J Clin Exp Neuropsychol. 21:816-830.
Alzheimer, A., R.A. Stelzmann, H.N. Schnitzlein, and F.R. Murtagh. 1995. An English translation of Alzheimer's 1907 paper, "Uber eine eigenartige Erkankung der Hirnrinde". Clin Anat. 8:429-431.
Andero, R., S.A. Heldt, K. Ye, X. Liu, A. Armario, and K.J. Ressler. 2011. Effect of 7,8-dihydroxyflavone, a small-molecule TrkB agonist, on emotional learning. Am J Psychiatry. 168:163-172.
Arancibia, S., M. Silhol, F. Mouliere, J. Meffre, I. Höllinger, T. Maurice, and L. Tapia-Arancibia. 2008. Protective effect of BDNF against β-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiol Dis. 31:316-326.
Arancio, O., and M.V. Chao. 2007. Neurotrophins, synaptic plasticity and dementia. Curr Opin Neurobiol. 17:325-330.
Biancalana, M., and S. Koide. 2010. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta. 1804:1405-1412.
Bollen, E., T. Vanmierlo, S. Akkerman, C. Wouters, H.M.W. Steinbusch, and J. Prickaerts. 2013. 7,8-Dihydroxyflavone improves memory consolidation processes in rats and mice. Behav Brain Res. 257:8-12.
Butterfield, D.A., K. Hensley, M. Harris, M. Mattson, and J. Carney. 1994. b-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer's disease. Biochem Biophys Res Commun. 200:710-715.
Calderon-Montano, J.M., E. Burgos-Moron, C. Perez-Guerrero, and M. Lopez-Lazaro. 2011. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem. 11:298-344.
Chandler, D., A. Woldu, A. Rahmadi, K. Shanmugam, N. Steiner, E. Wright, O. Benavente-Garcia, O. Schulz, J. Castillo, and G. Munch. 2010. Effects of plant-derived polyphenols on TNF-α and nitric oxide production induced by advanced glycation endproducts. Mol Nutr Food Res. 54 Suppl 2:S141-150.
Chen, G., K.S. Chen, J. Knox, J. Inglis, A. Bernard, S.J. Martin, A. Justice, L. McConlogue, D. Games, S.B. Freedman, and R.G. Morris. 2000. A learning deficit related to age and β-amyloid plaques in a mouse model of Alzheimer's disease. Nature. 408:975-979.
Chow, V.W., M.P. Mattson, P.C. Wong, and M. Gleichmann. 2009. An overview of APP processing enzymes and products. Neuromolecular Med. 12:1-12.
Coleman, P.D., and P.J. Yao. 2003. Synaptic slaughter in Alzheimer's disease. Neurobiol Aging. 24:1023-1027.
Corbit, K.C., D.A. Foster, and M.R. Rosner. 1999. Protein kinase Cdelta mediates neurogenic but not mitogenic activation of mitogen-activated protein kinase in neuronal cells. Mol Cell Biol. 19:4209-4218.
Cowley, S., H. Paterson, P. Kemp, and C.J. Marshall. 1994. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell. 77:841-852.
Criscuolo, C., C. Fabiani, C. Bonadonna, N. Origlia, and L. Domenici. 2015. BDNF prevents amyloid-dependent impairment of LTP in the entorhinal cortex by attenuating p38 MAPK phosphorylation. Neurobiol Aging. 36:1303-1309.
Dean, A.C., S.M. Groman, A.M. Morales, and E.D. London. 2013. An evaluation of the evidence that methamphetamine abuse causes cognitive decline in humans. Neuropsychopharmacology. 38:259-274.
Deisseroth, K., and R.W. Tsien. 2002. Dynamic multiphosphorylation passwords for activity-dependent gene expression. Neuron. 34:179-182.
Devi, L., and M. Ohno. 2012. 7,8-dihydroxyflavone, a small-molecule TrkB agonist, reverses memory deficits and BACE1 elevation in a mouse model of Alzheimer's disease. Neuropsychopharmacology. 37:434-444.
Dittrich, F., G. Ochs, A. Grosse-Wilde, U. Berweiler, Q. Yan, J.A. Miller, K.V. Toyka, and M. Sendtner. 1996. Pharmacokinetics of intrathecally applied BDNF and effects on spinal motoneurons. Exp Neurol. 141:225-239.
Finkbeiner, S., S.F. Tavazoie, A. Maloratsky, K.M. Jacobs, K.M. Harris, and M.E. Greenberg. 1997. CREB: a major mediator of neuronal neurotrophin responses. Neuron. 19:1031-1047.
Fridovich, I. 1999. Fundamental aspects of reactive oxygen species, or what's the matter with oxygen? Ann N Y Acad Sci. 893:13-18.
Gao, Z., K. Huang, and H. Xu. 2001. Protective effects of flavonoids in the roots of scutellaria baicalensis georgi against hydrogen peroxide-induced oxidative stress in hs-sy5y cells. Pharmacol Res. 43:173-178.
Garzon, D.J., and M. Fahnestock. 2007. Oligomeric amyloid decreases basal levels of brain-derived neurotrophic factor (BDNF) mRNA via specific downregulation of BDNF transcripts IV and V in differentiated human neuroblastoma cells. J Neurosci. 27:2628-2635.
Ginsberg, S.D., S. Che, J. Wuu, S.E. Counts, and E.J. Mufson. 2006. Down regulation of trk but not p75NTR gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer's disease. J Neurochem. 97:475-487.
Grewal, S.S., R.D. York, and P.J. Stork. 1999. Extracellular-signal-regulated kinase signalling in neurons. Curr Opin Neurobiol. 9:544-553.
Gupta, S., F. Afaq, and H. Mukhtar. 2001. Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochem Biophys Res Commun. 287:914-920.
Hensley, K., J.M. Carney, M.P. Mattson, M. Aksenova, M. Harris, J.F. Wu, R.A. Floyd, and D.A. Butterfield. 1994. A model for b-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci U S A. 91:3270-3274.
Huang, E.J., and L.F. Reichardt. 2001. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 24:677-736.
Huang, E.J., and L.F. Reichardt. 2003. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 72:609-642.
Huang, X., C.S. Atwood, M.A. Hartshorn, G. Multhaup, L.E. Goldstein, R.C. Scarpa, M.P. Cuajungco, D.N. Gray, J. Lim, R.D. Moir, R.E. Tanzi, and A.I. Bush. 1999. The Aβ peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry. 38:7609-7616.
Inestrosa, N.C., A. Alvarez, C.A. Pérez, R.D. Moreno, M. Vicente, C. Linker, O.I. Casanueva, C. Soto, and J. Garrido. 1996. Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron. 1996;16:881-891.
Inestrosa, N.C., M.C. Dinamarca, and A. Alvarez. 2008. Amyloid–cholinesterase interactions. FEBS J. 275:625-632.
Iulita, M.F., M.B. Bistue Millon, R. Pentz, L.F. Aguilar, S. Do Carmo, S. Allard, B. Michalski, E.N. Wilson, A. Ducatenzeiler, M.A. Bruno, M. Fahnestock, and A.C. Cuello. 2017. Differential deregulation of NGF and BDNF neurotrophins in a transgenic rat model of Alzheimer's disease. Neurobiol Dis. 108:307-323.
Jang, S.W., X. Liu, M. Yepes, K.R. Shepherd, G.W. Miller, Y. Liu, W.D. Wilson, G. Xiao, B. Blanchi, Y.E. Sun, and K. Ye. 2010. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci U S A. 107:2687-2692.
Jimenez-Aliaga, K., P. Bermejo-Bescos, J. Benedi, and S. Martin-Aragon. 2011. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci. 89:939-945.
Kanninen, K., T.M. Malm, H.K. Jyrkkanen, G. Goldsteins, V. Keksa-Goldsteine, H. Tanila, M. Yamamoto, S. Yla-Herttuala, A.L. Levonen, and J. Koistinaho. 2008. Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Mol Cell Neurosci. 39:302-313.
Kaplan, D.R., and F.D. Miller. 2000. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol. 10:381-391.
Karimipour, M., R. Rahbarghazi, H. Tayefi, M. Shimia, M. Ghanadian, J. Mahmoudi, and H.S. Bagheri. 2019. Quercetin promotes learning and memory performance concomitantly with neural stem/progenitor cell proliferation and neurogenesis in the adult rat dentate gyrus. Int J Dev Neurosci. 74:18-26.
Karkkainen, V., Y. Pomeshchik, E. Savchenko, H. Dhungana, A. Kurronen, S. Lehtonen, N. Naumenko, P. Tavi, A.L. Levonen, M. Yamamoto, T. Malm, J. Magga, K.M. Kanninen, and J. Koistinaho. 2014. Nrf2 regulates neurogenesis and protects neural progenitor cells against Abeta toxicity. Stem Cells. 32:1904-1916.
Kaushal, V., R. Dye, P. Pakavathkumar, B. Foveau, J. Flores, B. Hyman, B. Ghetti, B.H. Koller, and A.C. LeBlanc. 2015. Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory interleukin-1-β production and axonal degeneration-associated Caspase-6 activation. Cell Death Differ. 22:1676-1686.
Kelder, J., P.D. Grootenhuis, D.M. Bayada, L.P. Delbressine, and J.P. Ploemen. 1999. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res. 16:1514-1519.
Kim, J.K., S.J. Choi, H.Y. Cho, H.J. Hwang, Y.J. Kim, S.T. Lim, C.J. Kim, H.K. Kim, S. Peterson, and D.H. Shin. 2010. Protective effects of kaempferol (3,4',5,7-tetrahydroxyflavone) against amyloid beta peptide (Aβ)-induced neurotoxicity in ICR mice. Biosci Biotechnol Biochem. 74:397-401.
Lee, B., B. Sur, S.G. Cho, M. Yeom, I. Shim, H. Lee, and D.H. Hahm. 2016. Wogonin attenuates hippocampal neuronal loss and cognitive dysfunction in trimethyltin-intoxicated rats. Biomol Ther (Seoul). 24:328-337.
Lee, H., Y.O. Kim, H. Kim, S.Y. Kim, H.S. Noh, S.S. Kang, G.J. Cho, W.S. Choi, and K. Suk. 2003. Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB J. 17:1943-1944.
Lee, S.Y., Y.J. Chiu, S.M. Yang, C.M. Chen, C.C. Huang, G.J. Lee-Chen, W. Lin, and K.H. Chang. 2018. Novel synthetic chalcone-coumarin hybrid for Ab aggregation reduction, antioxidation, and neuroprotection. CNS Neurosci Ther. 24:1286-1298.
LeVine, H., 3rd. 1999. Quantification of β-sheet amyloid fibril structures with thioflavin T. Methods Enzymol. 309:274-284.
Li, N., and G.T. Liu. 2010. The novel squamosamide derivative FLZ enhances BDNF/TrkB/CREB signaling and inhibits neuronal apoptosis in APP/PS1 mice. Acta Pharmacol Sin. 31:265-272.
Lima Giacobbo, B., J. Doorduin, H.C. Klein, R. Dierckx, E. Bromberg, and E.F.J. de Vries. 2019. Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol. 56:3295-3312.
Liu, H., L. Wang, M. Lv, R. Pei, P. Li, Z. Pei, Y. Wang, W. Su, and X.Q. Xie. 2014. AlzPlatform: an Alzheimer's disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research. J Chem Inf Model. 54:1050-1060.
Liu, R., T.T. Zhang, D. Zhou, X.Y. Bai, W.L. Zhou, C. Huang, J.K. Song, F.R. Meng, C.X. Wu, L. Li, and G.H. Du. 2013. Quercetin protects against the Ab25-35-induced amnesic injury: involvement of inactivation of rage-mediated pathway and conservation of the NVU. Neuropharmacology. 67:419-431.
Lonze, B.E., and D.D. Ginty. 2002. Function and regulation of CREB family transcription factors in the nervous system. Neuron. 35:605-623.
Ma, Q. 2013. Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 53:401-426.
Maciel, R.M., F.B. Carvalho, A.A. Olabiyi, R. Schmatz, J.M. Gutierres, N. Stefanello, D. Zanini, M.M. Rosa, C.M. Andrade, M.A. Rubin, M.R. Schetinger, V.M. Morsch, C.C. Danesi, and S.T.A. Lopes. 2016. Neuroprotective effects of quercetin on memory and anxiogenic-like behavior in diabetic rats: Role of ectonucleotidases and acetylcholinesterase activities. Biomed Pharmacother. 84:559-568.
Mariga, A., M. Mitre, and M.V. Chao. 2017. Consequences of brain-derived neurotrophic factor withdrawal in CNS neurons and implications in disease. Neurobiol Dis. 97:73-79.
Martin, K.C., and E.R. Kandel. 1996. Cell adhesion molecules, CREB, and the formation of new synaptic connections. Neuron. 17:567-570.
McDonald, D.R., K.R. Brunden, and G.E. Landreth. 1997. Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J Neurosci. 17:2284-2294.
McKay, D.L., and J.B. Blumberg. 2006. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother Res. 20:519-530.
Miao, E.A., J.V. Rajan, and A. Aderem. 2011. Caspase-1-induced pyroptotic cell death. Immunol Rev. 243:206-214.
Mietelska-Porowska, A., U. Wasik, M. Goras, A. Filipek, and G. Niewiadomska. 2014. Tau protein modifications and interactions: their role in function and dysfunction. Int J Mol Sci. 15:4671-4713.
Mufson, E.J., S.Y. Ma, E.J. Cochran, D.A. Bennett, L.A. Beckett, S. Jaffar, H.U. Saragovi, and J.H. Kordower. 2000. Loss of nucleus basalis neurons containing trkA immunoreactivity in individuals with mild cognitive impairment and early Alzheimer's disease. J Comp Neurol. 427:19-30.
Murray, P.S., and P.V. Holmes. 2011. An overview of brain-derived neurotrophic factor and implications for excitotoxic vulnerability in the hippocampus. Int J Pept. 2011:654085.
Nagahara, A.H., D.A. Merrill, G. Coppola, S. Tsukada, B.E. Schroeder, G.M. Shaked, L. Wang, A. Blesch, A. Kim, J.M. Conner, E. Rockenstein, M.V. Chao, E.H. Koo, D. Geschwind, E. Masliah, A.A. Chiba, and M.H. Tuszynski. 2009. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nat Med. 15:331-337.
Nagahara, A.H., M. Mateling, I. Kovacs, L. Wang, S. Eggert, E. Rockenstein, E.H. Koo, E. Masliah, and M.H. Tuszynski. 2013. Early BDNF treatment ameliorates cell loss in the entorhinal cortex of APP transgenic mice. J Neurosci. 33:15596-15602.
Nalivaeva, N.N., and A.J. Turner. 2016. AChE and the amyloid precursor protein (APP) - Cross-talk in Alzheimer's disease. Chem Biol Interact. 259:301-306.
Naslund, J., V. Haroutunian, R. Mohs, K.L. Davis, P. Davies, P. Greengard, and J.D. Buxbaum. 2000. Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. JAMA. 283:1571-1577.
Pajouhesh, H., and G.R. Lenz. 2005. Medicinal chemical properties of successful central nervous system drugs. NeuroRx. 2:541-553.
Poduslo, J.F., and G.L. Curran. 1996. Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res Mol Brain Res. 36:280-286.
Pugazhenthi, S., M. Wang, S. Pham, C.I. Sze, and C.B. Eckman. 2011. Downregulation of CREB expression in Alzheimer's brain and in Ab-treated rat hippocampal neurons. Mol Neurodegener. 6:60.
Ramsey, C.P., C.A. Glass, M.B. Montgomery, K.A. Lindl, G.P. Ritson, L.A. Chia, R.L. Hamilton, C.T. Chu, and K.L. Jordan-Sciutto. 2007. Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol. 66:75-85.
Reitz, C. 2012. Alzheimer's disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis. 2012:369808.
Reyes, A.E., D.R. Perez, A. Alvarez, J. Garrido, M.K. Gentry, B.P. Doctor, and N.C. Inestrosa. 1997. A monoclonal antibody against acetylcholinesterase inhibits the formation of amyloid fibrils induced by the enzyme. Biochem Biophys Res Commun. 232:652-655.
Roher, A.E., J.D. Lowenson, S. Clarke, A.S. Woods, R.J. Cotter, E. Gowing, and M.J. Ball. 1993. β-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc Natl Acad Sci U S A. 90:10836-10840.
Russo, M., C. Spagnuolo, I. Tedesco, S. Bilotto, and G.L. Russo. 2012. The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem Pharmacol. 83:6-15.
Saura, C.A., and J. Valero. 2011. The role of CREB signaling in Alzheimer's disease and other cognitive disorders. Rev Neurosci. 22:153-169.
Scheff, S.W., and D.A. Price. 1993. Synapse loss in the temporal lobe in Alzheimer's disease. Ann Neurol. 33:190-199.
Scheff, S.W., D.A. Price, and D.L. Sparks. 2001. Quantitative assessment of possible age-related change in synaptic numbers in the human frontal cortex. Neurobiol Aging. 22:355-365.
Selkoe, D.J. 1991. The molecular pathology of Alzheimer's disease. Neuron. 6:487-498.
Shankar, G.M., S. Li, T.H. Mehta, A. Garcia-Munoz, N.E. Shepardson, I. Smith, F.M. Brett, M.A. Farrell, M.J. Rowan, C.A. Lemere, C.M. Regan, D.M. Walsh, B.L. Sabatini, and D.J. Selkoe. 2008. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med. 14:837-842.
Sheng, M., M.A. Thompson, and M.E. Greenberg. 1991. CREB: a Ca2+-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science. 252:1427-1430.
Shukla, S., and S. Gupta. 2010. Apigenin: a promising molecule for cancer prevention. Pharm Res. 27:962-978.
Silva, M.M., M.R. Santos, G. Caroco, R. Rocha, G. Justino, and L. Mira. 2002. Structure-antioxidant activity relationships of flavonoids: a re-examination. Free Radic Res. 36:1219-1227.
Song, J.H., J.T. Yu, and L. Tan. 2015. Brain-derived neurotrophic factor in Alzheimer's disease: risk, mechanisms, and therapy. Mol Neurobiol. 52:1477-1493.
Soule, J., E. Messaoudi, and C.R. Bramham. 2006. Brain-derived neurotrophic factor and control of synaptic consolidation in the adult brain. Biochem Soc Trans. 34:600-604.
Suganthy, N., K.P. Devi, S.F. Nabavi, N. Braidy, and S.M. Nabavi. 2016. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed Pharmacother. 84:892-908.
Tabuchi, A., H. Sakaya, T. Kisukeda, H. Fushiki, and M. Tsuda. 2002. Involvement of an upstream stimulatory factor as well as cAMP-responsive element-binding protein in the activation of brain-derived neurotrophic factor gene promoter I. J Biol Chem. 277:35920-35931.
Tao, X., S. Finkbeiner, D.B. Arnold, A.J. Shaywitz, and M.E. Greenberg. 1998. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron. 20:709-726.
Tarawneh, R., and D.M. Holtzman. 2012. The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb Perspect Med. 2:a006148.
Tchantchou, F., P.N. Lacor, Z. Cao, L. Lao, Y. Hou, C. Cui, W.L. Klein, and Y. Luo. 2009. Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. J Alzheimers Dis. 18:787-798.
Tong, L., R. Balazs, P.L. Thornton, and C.W. Cotman. 2004. b-amyloid peptide at sublethal concentrations downregulates brain-derived neurotrophic factor functions in cultured cortical neurons. J Neurosci. 24:6799-6809.
Uttara, B., A.V. Singh, P. Zamboni, and R.T. Mahajan. 2009. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 7:65-74.
Vaillant, A.R., I. Mazzoni, C. Tudan, M. Boudreau, D.R. Kaplan, and F.D. Miller. 1999. Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase–Akt pathway to synergistically regulate neuronal survival. J Cell Biol. 146:955-966.
Vetter, M.L., D. Martin-Zanca, L.F. Parada, J.M. Bishop, and D.R. Kaplan. 1991. Nerve growth factor rapidly stimulates tyrosine phosphorylation of phospholipase C-γ1 by a kinase activity associated with the product of the trk protooncogene. Proc Natl Acad Sci U S A. 88:5650-5654.
Vitolo, O.V., A. Sant'Angelo, V. Costanzo, F. Battaglia, O. Arancio, and M. Shelanski. 2002. Amyloid β-peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc Natl Acad Sci U S A. 99:13217-13221.
Vogels, O.J., C.A. Broere, H.J. ter Laak, H.J. ten Donkelaar, R. Nieuwenhuys, and B.P. Schulte. 1990. Cell loss and shrinkage in the nucleus basalis Meynert complex in Alzheimer's disease. Neurobiol Aging. 11:3-13.
Walsh, D.M., and D.J. Selkoe. 2007. Aβ oligomers - a decade of discovery. J Neurochem. 101:1172-1184.
Wang, H.W., J.F. Pasternak, H. Kuo, H. Ristic, M.P. Lambert, B. Chromy, K.L. Viola, W.L. Klein, W.B. Stine, G.A. Krafft, and B.L. Trommer. 2002. Soluble oligomers of β amyloid (1-42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res. 924:133-140.
Wu, C.H., T.H. Hung, C.C. Chen, C.H. Ke, C.Y. Lee, P.Y. Wang, and S.F. Chen. 2014. Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS One. 9:e113397.
Yang, B., Q. Ren, J.c. Zhang, Q.X. Chen, and K. Hashimoto. 2017. Altered expression of BDNF, BDNF pro-peptide and their precursor proBDNF in brain and liver tissues from psychiatric disorders: rethinking the brain–liver axis. Transl Psychiatry. 7:e1128.
Yang, E.J., G.S. Kim, M. Jun, and K.S. Song. 2014. Kaempferol attenuates the glutamate-induced oxidative stress in mouse-derived hippocampal neuronal HT22 cells. Food Funct. 5:1395-1402.
Yao, R.Q., D.S. Qi, H.L. Yu, J. Liu, L.H. Yang, and X.X. Wu. 2012. Quercetin attenuates cell apoptosis in focal cerebral ischemia rat brain via activation of BDNF-TrkB-PI3K/Akt signaling pathway. Neurochem Res. 37:2777-2786.
Ying, S.W., M. Futter, K. Rosenblum, M.J. Webber, S.P. Hunt, T.V. Bliss, and C.R. Bramham. 2002. Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J Neurosci. 22:1532-1540.
Zhang, Z., X. Liu, J.P. Schroeder, C.B. Chan, M. Song, S.P. Yu, D. Weinshenker, and K. Ye. 2013. 7,8-Dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology. 39:638-650.
Zhao, L., J.L. Wang, R. Liu, X.X. Li, J.F. Li, and L. Zhang. 2013. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer's disease mouse model. Molecules. 18:9949-9965.
Zheng, Z., B. Sabirzhanov, and J. Keifer. 2010. Oligomeric amyloid-β inhibits the proteolytic conversion of brain-derived neurotrophic factor (BDNF), AMPA receptor trafficking, and classical conditioning. J Biol Chem. 285:34708-34717.
Zhu, S.G., J.G. Sheng, R.A. Jones, M.M. Brewer, X.Q. Zhou, R.E. Mrak, and W.S. Griffin. 1999. Increased interleukin-1β converting enzyme expression and activity in Alzheimer disease. J Neuropathol Exp Neurol. 58:582-587.
Zussy, C., A. Brureau, E. Keller, S. Marchal, C. Blayo, B. Delair, G. Ixart, T. Maurice, and L. Givalois. 2013. Alzheimer's disease related markers, cellular toxicity and behavioral deficits induced six weeks after oligomeric amyloid-beta peptide injection in rats. PLoS One. 8:e53117.