簡易檢索 / 詳目顯示

研究生: 王品閑
Wang, Pin-Hsien
論文名稱: STEAM教學融入高中地理科探究與實作課程之研究-以糖度計繪製糖度地圖為例
Incorporating STEAM into High School Geography Education: Creating Sugar Content Maps with Refractometers
指導教授: 陳哲銘
Chen, Che-Ming
口試委員: 侯惠澤
Hou, Huei-Tse
洪立三
Hung, Li-San
陳哲銘
Chen, Che-Ming
口試日期: 2024/06/20
學位類別: 碩士
Master
系所名稱: 地理學系
Department of Geography
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 106
中文關鍵詞: STEAM地理教育跨領域學習行動研究
英文關鍵詞: STEAM, Geography education, Interdisciplinary Learning, Action Research
研究方法: 行動研究法
DOI URL: http://doi.org/10.6345/NTNU202401475
論文種類: 學術論文
相關次數: 點閱:181下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

謝辭 I 摘要 II ABSTRACT III 目次 IV 表次 VI 圖次 VII 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 3 第二章 文獻回顧 4 第一節 STEAM教育 4 一、 STEAM教育的發展 4 二、 STEAM的重要性 6 三、 STEAM與跨領域學習 8 四、 STEAM態度評量 11 第二節 STEAM與地理教育 14 一、 STEAM與地理教育的關係 14 二、 STEAM與地理教育的案例 19 三、 STEAM教學融入地理教育的方法 21 四、 地理教育融入STEAM的挑戰 24 第三節 地理探究與實作 26 一、 地理探究與實作的發展 26 二、 地理探究與實作的課程設計 28 第四節 小結 32 第三章 研究方法與教學設計 33 第一節 研究方法 33 一、 研究方法與設計 33 二、 研究對象 35 三、 研究工具 35 第二節 教學設計 40 一、 課程模組設計 40 二、 課程目標與探究議題 42 三、 教學內容 44 四、 教學評量 48 第四章 研究結果與討論 49 第一節 STEAM教學融入高中地理探究與實作的成效 49 一、 問卷結果分析 49 二、 學生學習成果分析 55 三、 學生課程回饋結果 63 四、 合作教師訪談結果 67 五、 研究者反思 69 第五章 結論與建議 72 第一節 結論 72 第二節 建議 73 第三節 研究限制 74 參考文獻 75 附錄 87 附錄一、STEAM與跨領域學習態度調查 87 附錄二、[糖度計原理及應用]課堂學習單 89 附錄三、本研究課程學習成效檢核表 90 附錄四、課程回饋表單(GOOGLE FORMS發放線上回饋表單) 91 附錄五、本研究設計教案 92

Academy, A. (2018). Geography: Shaping Australia’s Future. November.
Aguilera, D., &Ortiz-Revilla, J. (2021). Stem vs. Steam education and student creativity: A systematic literature review. Education Sciences, 11(7). https://doi.org/10.3390/educsci11070331
AlMamun, M. R. H., Jackson, T., &White, G. (2015). Does the Geography Major Fit in STEM? Journal of Geography and Geology, 7(1). https://doi.org/10.5539/jgg.v7n1p27
AlSalami, M. K., Makela, C. J., &deMiranda, M. A. (2017). Assessing changes in teachers’ attitudes toward interdisciplinary STEM teaching. International Journal of Technology and Design Education, 27(1), 63–88. https://doi.org/10.1007/s10798-015-9341-0
Andrini, V. S. (2016). The Effectiveness of Inquiry Learning Method to Enhance Students’ Learning Outcome: A Theoritical and Empirical Review. Journal of Education and Practice, 6(2), 162–168. https://doi.org/10.55215/jppguseda.v6i2.8124
Bandura, A. (1991). Social cognitive theory of self-regulation. Organizational Behavior and Human Decision Processes, 50(2), 248–287. https://doi.org/10.1016/0749-5978(91)90022-L
Baran, E., Bilici, S. C., Mesutoglu, C., &Ocak, C. (2019). The impact of an out‐of‐school STEM education program on students’ attitudes toward STEM and STEM careers. School Science and Mathematics, 119(4), 223–235. https://doi.org/10.1111/ssm.12330
Barrow, L. H. (2006). A brief history of inquiry: From dewey to standards. Journal of Science Teacher Education, 17(3), 265–278. https://doi.org/10.1007/s10972-006-9008-5
Barry N. Burke, D. (2014). THE ITEEA 6E Learning byDeSIGNTM Model. Technology and Engineering Teacher, 73(6), 14.
Becker, K., &Park, K. (2011). Effects of integrative approaches among science , technology , engineering , and mathematics ( STEM ) subjects on students ’ learning : A preliminary meta-analysis. Journal of STEM Education, 12(5), 23–38.
Bedar, R. W. A.-H., &Al-Shboul, M. A. (2020). The Effect of Using STEAM Approach on Motivation Towards Learning Among High School Students in Jordan. International Education Studies, 13(9), 48. https://doi.org/10.5539/ies.v13n9p48
Bell, R. L., Blair, L. M., Crawford, B. A., &Lederman, N. G. (2003). Just do it? Impact of a science apprenticeship program on high school students’ understandings of the nature of science and scientific inquiry. Journal of Research in Science Teaching, 40(5), 487–509. https://doi.org/10.1002/tea.10086
Bolick, M. M., Mikhailova, E. A., &Post, C. J. (2022). Teaching Innovation in STEM Education Using an Unmanned Aerial Vehicle (UAV). Education Sciences, 12(3). https://doi.org/10.3390/educsci12030224
Breiner, J. M., Harkness, S. S., Johnson, C. C., &Koehler, C. M. (2012). What Is STEM? A Discussion About Conceptions of STEM in Education and Partnerships. School Science and Mathematics, 112(1), 3–11. https://doi.org/10.1111/j.1949-8594.2011.00109.x
Brown, S. D., Lent, R. W., &Larkin, K. C. (1989). Self-efficacy as a moderator of scholastic aptitude-academic performance relationships. Journal of Vocational Behavior, 35(1), 64–75. https://doi.org/10.1016/0001-8791(89)90048-1
Brown, P. L., Abell, S. K., Demir, A., & Schmidt, F. J. (2006). College science teachers' views of classroom inquiry. Science education, 90(5), 784-802.
Bybee, R. W., &Landes, N. M. (1990). Science for Life & Living: An Elementary School Science Program from Biological Sciences Curriculum Study. American Biology Teacher, 52(2), 92–98. https://doi.org/10.2307/4449042
Caldis, S., &Kleeman, G. (2019). Geography and STEM. AAG Newsletter, 32, 5–10. https://doi.org/10.14433/2014.0021
Caputo, A. (2017). Una scala breve sull’atteggiamento verso l’apprendimento delle materie scientifiche (ATLoSS) per gli studenti di scuola secondaria di primo grado. Journal of Educational, Cultural and Psychological Studies, 2017(16), 57–76. https://doi.org/10.7358/ecps-2017-016-capu
Cheng, Y. C., &So, W. W. M. (2020). Managing STEM learning: a typology and four models of integration. International Journal of Educational Management, 34(6), 1063–1078. https://doi.org/10.1108/IJEM-01-2020-0035
Connor, A. M., Karmokar, S., &Whittington, C. (2015). From STEM to STEAM: Strategies for Enhancing Engineering & Technology Education. International Journal of Engineering Pedagogy (IJEP), 5(2), 37. https://doi.org/10.3991/ijep.v5i2.4458
Corbacho, A. M., Minini, L., Pereyra, M., González-Fernández, A. E., Echániz, R., Repetto, L., Cruz, P., Fernández-Damonte, V., Lorieto, A., &Basile, M. (2021). Interdisciplinary higher education with a focus on academic motivation and teamwork diversity. International Journal of Educational Research Open, 2, 100062. https://doi.org/10.1016/j.ijedro.2021.100062
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly: Management Information Systems, 13(3), 319–339. https://doi.org/10.2307/249008
Demirci, A. (2009). How do Teachers Approach New Technologies: Geography Teachers’ Attitudes towards Geographic Information Systems (GIS). European Journal of Educational Studies, 1(1), 43–53.
Dewey, J. (1916). Method in Science Teaching. General -Science Quarterly.
Dincă, M., Luștrea, A., Onițiu, A., Crașovan, M., &Berge, T. (2021). The effects of disciplinary composition on virtual learning group process dynamics: Students’ perspectives. Sustainability (Switzerland), 13(15), 1–18. https://doi.org/10.3390/su13158493
Doering, A., Koseoglu, S., Scharber, C., Henrickson, J., &Lanegran, D. (2014). Technology Integration in K–12 Geography Education Using TPACK as a Conceptual Model. Journal of Geography, 113(6), 223–237. https://doi.org/10.1080/00221341.2014.896393
Duran, L. B., &Duran, E. (2004). The 5E Instructional Model: A Learning Cycle Approach for Inquiry-Based Science Teaching. Science Education Review.
Ercan, S., Bozkurt Altan, E., Taştan, B., &Dağ, I. (2016). Integrating GIS into science classes to handle STEM education. Journal of Turkish Science Education, 13(Specialissue), 30–43. https://doi.org/10.12973/tused.10169a
Favier, T. T., &Van DerSchee, J. A. (2012). Exploring the characteristics of an optimal design for inquiry-based geography education with Geographic Information Systems. Computers and Education, 58(1), 666–677. https://doi.org/10.1016/j.compedu.2011.09.007
Fruchter, R., &Emery, K. (1998). Teamwork : Assessing Cross-Disciplinary Learning.
Gehlhar, A. M., &Duffield, S. K. (2015). Deconstruction Geography: A STEM Approach. Middle School Journal, 46(3), 3–9. https://doi.org/10.1080/00940771.2015.11461909
Guzey, S. S., Harwell, M., &Moore, T. (2014). Development of an Instrument to Assess Attitudes Toward Science, Technology, Engineering, and Mathematics (STEM). School Science and Mathematics, 114(6), 271–279. https://doi.org/10.1111/ssm.12077
Haller, C. R., Gallagher, V. J., Weldon, T. L., &Felder, R. M. (2000). Dynamics of peer education in cooperative learning workgroups. Journal of Engineering Education, 89(3), 285–293. https://doi.org/10.1002/j.2168-9830.2000.tb00527.x
Henry, P., &Semple, H. (2012). Integrating Online GIS into the K-12 Curricula: Lessons from the Development of a Collaborative GIS in Michigan. Journal of Geography, 111(1), 3–14. https://doi.org/10.1080/00221341.2011.549237
Herschbach, D. R. (2011). The STEM Initiative: Constraints and Challenges. Quality Management in Health Care, 13(4), 201. https://doi.org/10.1097/00019514-200410000-00001
Holmlund, T. D., Lesseig, K., &Slavit, D. (2018). Making sense of “STEM education” in K-12 contexts. International Journal of STEM Education, 5(32), 1–18.
Honey, M., Greg Pearson, &Schweingruber, H. (2009). The future of TE masters degrees: STEM. In 70th Annual International Technology Education Association Conference. https://www.nap.edu/catalog/18612/stem-integration-in-k-12-education-status-prospects-and-an
Hong, J. E., &Stonier, F. (2015). GIS In-Service Teacher Training Based on TPACK. Journal of Geography, 114(3), 108–117. https://doi.org/10.1080/00221341.2014.947381
Hudson, M. A. (2019). Using a Multifaceted Robotics-Based Intervention to Increase Student Interest in STEM and Computational Thinking Skills. May. https://scholarworks.boisestate.edu/cgi/viewcontent.cgi?article=2636&context=td
Jacobs, H. H. (1989). Interdisciplinary Curriculum: design ans implematation. In Ìkala, Revista De Lenguaje Y Cultura (Vol. 8, Issue Curriculum design).
Jensen, F., &Sjaastad, J. (2013). a Norwegian Out-of-School Mathematics Project’S Influence on Secondary Students’ Stem Motivation. International Journal of Science and Mathematics Education, 11(6), 1437–1461. https://doi.org/10.1007/s10763-013-9401-4
Jeronen, E. (2004). Geography and Biology and Teacher Education in Finland. Journal of Baltic Science Education, 2(6), 5–14. http://search.ebscohost.com/login.aspx?direct=true&db=asn&AN=15174819&site=ehost-live&authtype=ip,shib&user=s1523151
Jia, Y., Zhou, B., &Zheng, X. (2021). A Curriculum Integrating STEAM and Maker Education Promotes Pupils’ Learning Motivation, Self-Efficacy, and Interdisciplinary Knowledge Acquisition. Frontiers in Psychology, 12(September), 1–10. https://doi.org/10.3389/fpsyg.2021.725525
Jones, C. (2009). Interdisciplinary Approach - Advantages, Disadvantages, and the Future Benefits of Interdisciplinary Studies. Development from Below: Anthropologist and Development Situations, 7, 145–150. https://doi.org/10.1515/9783110805338.145
Kleeman, G., &Caldis, S. (2021). Recognising Geography As a Partial STEM Subject: The Journey So Far. GEOGRAPHICAL EDUCATION, 34(December), 5–13.
Krutsch, E., &Roderick, V. (2022). STEM Day: Explore Growing Careers | U.S. Department of Labor Blog. U.S. DEPARTMENT OF LABOR BLOG. https://blog.dol.gov/2022/11/04/stem-day-explore-growing-careers
Leavy, A., Dick, L., Meletiou-Mavrotheris, M., Paparistodemou, E., &Stylianou, E. (2023). The prevalence and use of emerging technologies in STEAM education: A systematic review of the literature. Journal of Computer Assisted Learning, 39(4), 1061–1082. https://doi.org/10.1111/jcal.12806
Lee, M. H., Chai, C. S., &Hong, H. Y. (2019). STEM Education in Asia Pacific: Challenges and Development. Asia-Pacific Education Researcher, 28(1), 1–4. https://doi.org/10.1007/s40299-018-0424-z
Lesseig, K., Nelson, T. H., Slavit, D., &Seidel, R. A. (2016). Supporting Middle School Teachers’ Implementation of STEM Design Challenges. School Science and Mathematics, 116(4), 177–188. https://doi.org/10.1111/ssm.12172
Litzler, E., Samuelson, C. C., &Lorah, J. A. (2014). Breaking it down: Engineering student STEM confidence at the intersection of race/ethnicity and gender. Research in Higher Education, 55(8), 810–832. https://doi.org/10.1007/s11162-014-9333-z
Lou, S. J., Shih, R. C., Diez, C. R., &Tseng, K. H. (2011). The impact of problem-based learning strategies on STEM knowledge integration and attitudes: An exploratory study among female Taiwanese senior high school students. International Journal of Technology and Design Education, 21(2), 195–215. https://doi.org/10.1007/s10798-010-9114-8
Maeda, J. (2013). STEM + Art = STEAM. Steam, 1(1), 1–3. https://doi.org/10.5642/steam.201301.34
Margot, K. C., &Kettler, T. (2019). Teachers’ perception of STEM integration and education: a systematic literature review. International Journal of STEM Education, 6(1). https://doi.org/10.1186/s40594-018-0151-2
Marra, R. M., Steege, L., Tsai, C. L., &Tang, N. E. (2016). Beyond “group work”: an integrated approach to support collaboration in engineering education. International Journal of STEM Education, 3(1). https://doi.org/10.1186/s40594-016-0050-3
Maddens, L., Depaepe, F., Raes, A., & Elen, J. (2023). Fostering students’ motivation towards learning research skills: the role of autonomy, competence and relatedness support. Instructional Science, 51(1), 165-199.
Mcgregor, S. L. T., &Volckmann, R. (2013). Transversity: Transdisciplinarity in higher education. Leading Transformative Higher Education, 58–81.
Mejias, S., Thompson, N., Sedas, R. M., Rosin, M., Soep, E., Peppler, K., Roche, J., Wong, J., Hurley, M., Bell, P., &Bevan, B. (2021). The trouble with STEAM and why we use it anyway. Science Education, 105(2), 209–231. https://doi.org/10.1002/sce.21605
Newton, L. D., &Newton, D. P. (2014). Creativity in 21st-century education. Prospects, 44(4), 575–589. https://doi.org/10.1007/s11125-014-9322-1
Nugent, G., Barker, B., Grandgenett, N., &Adamchuk, V. (2009). The use of digital manipulatives in K-12: Robotics, GPS/GIS and programming. Proceedings - Frontiers in Education Conference, FIE, 23–28. https://doi.org/10.1109/FIE.2009.5350828
Nugent, G., Barker, B., Welch, G., Grandgenett, N., Wu, C. R., &Nelson, C. (2015). A Model of Factors Contributing to STEM Learning and Career Orientation. International Journal of Science Education, 37(7), 1067–1088. https://doi.org/10.1080/09500693.2015.1017863
Oldakowski, R., &Johnson, A. (2018). Combining Geography, Math, and Science to Teach Climate Change and Sea Level Rise. Journal of Geography, 117(1), 17–28. https://doi.org/10.1080/00221341.2017.1336249
Olimboyevna, O. (2021). STEAM APPROACH IN GEOGRAPHY EDUCATION. Pedagogical Sciences and Teaching Methods, 1(7), 55–58.
Osborne, J., Simon, S., &Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049–1079. https://doi.org/10.1080/0950069032000032199
Ostler, E. (2012). 21st Century STEM Education : A Tactical Model for Long-Range Success University of Nebraska at Omaha. 2(1), 28–33.
Oyana, T. J., Garcia, S. J., Haegele, J. A., Hawthorne, T. L., Morgan, J., &Young, N. J. (2015). Nurturing Diversity in STEM Fields through Geography: the Past, the Present, and the Future. Journal of STEM Education : Innovations and Research, July, 20–29.
Ozis, F., Pektaş, A. O., Akça, M., &DeVoss, D. A. (2018). How to shape attitudes toward STEM careers: The search for the most impactful extracurricular clubs. Journal of Pre-College Engineering Education Research, 8(1), 25–32. https://doi.org/10.7771/2157-9288.1192
Perignat, E., &Katz-Buonincontro, J. (2019). STEAM in practice and research: An integrative literature review. Thinking Skills and Creativity, 31(July 2018), 31–43. https://doi.org/10.1016/j.tsc.2018.10.002
Putra, A. K., Sumarmi, Deffinika, I., &Islam, M. N. (2021). The effect of blended project-based learning with stem approach to spatial thinking ability and geographic skill. International Journal of Instruction, 14(3), 685–704. https://doi.org/10.29333/iji.2021.14340a
Qureshi, A., &Qureshi, N. (2021). Challenges and issues of STEM education. Advances in Mobile Learning Educational Research, 1(2), 146–161. https://doi.org/10.25082/amler.2021.02.009
Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., ... & Soloway, E. (2018). A scaffolding design framework for software to support science inquiry. In Scaffolding (pp. 337-386). Psychology Press.
Ramsden, J. M. (1998). Mission impossible?: Can anything be done about attitudes to science? International Journal of Science Education, 20(2), 125–137. https://doi.org/10.1080/0950069980200201
Rittmayer, A. D., &Beier, M. E. (2008). Overview : Self-Efficacy in STEM. Swe-Awe Casee Overviews, 1–12.
Roller, S. A., Lampley, S. A., Dillihunt, M. L., Benfield, M. P. J., &Turner, M. W. (2018). Student attitudes toward STEM: A revised instrument of social cognitive career theory constructs (Fundamental). ASEE Annual Conference and Exposition, Conference Proceedings, 2018-June. https://doi.org/10.18260/1-2--31001
Rosenberg, J. M., &Koehler, M. J. (2015). Context and technological pedagogical content knowledge (TPACK): A systematic review. Journal of Research on Technology in Education, 47(3), 186–210. https://doi.org/10.1080/15391523.2015.1052663
Sanders, M., &A. (2009). STEM,STEMEducation,STEMmania. The Technology Teacher, 20–27. https://vtechworks.lib.vt.edu/bitstream/handle/10919/51616/STEMmania.pdf?sequence=1&isAllowed=y
Saunders-Stewart, K. S., Gyles, P. D. T., &Shore, B. M. (2012). Student Outcomes in Inquiry Instruction: A Literature-Derived Inventory. Journal of Advanced Academics, 23(1), 5–31. https://doi.org/10.1177/1932202X11429860
Schwartz, L., Adler, I., Madjar, N., & Zion, M. (2021). Rising to the challenge: The effect of individual and social metacognitive scaffolds on students’ expressions of autonomy and competence throughout an inquiry process. Journal of Science Education and Technology, 30, 582-593.
Selway, K. (2021). STEM in Geography Education -- An Earth Science Perspective. Geographical Education, 34, 18–21. https://login.libweb.lib.utsa.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ1329010&site=ehost-live&scope=site
Seow, T., Chang, J., &Neil Irvine, K. (2019). Field-Based Inquiry as a Signature Pedagogy for Geography in Singapore. Journal of Geography, 118(6), 227–237. https://doi.org/10.1080/00221341.2018.1561740
Setiawaty, S., Fatmi, N., Rahmi, A., Unaida, R., Fakhrah, Hadiya, I., Muhammad, I., Mursalin, Muliana, Rohantizani, Alchalil, &Sari, R. P. (2018). Science, technology, engineering, and mathematics (Stem) learning on student’s science process skills and science attitudes. Emerald Reach Proceedings Series, 1, 575–581. https://doi.org/10.1108/978-1-78756-793-1-00036
Shiau, S. J. H., Huang, C. Y., Yang, C. L., &Juang, J. N. (2018). A derivation of factors influencing the innovation diffusion of the OpenStreetMap in STEM education. Sustainability (Switzerland), 10(10), 1–29. https://doi.org/10.3390/su10103447
Sithole, A., Chiyaka, E. T., McCarthy, P., Mupinga, D. M., Bucklein, B. K., &Kibirige, J. (2017). Student Attraction, Persistence and Retention in STEM Programs: Successes and Continuing Challenges. Higher Education Studies, 7(1), 46. https://doi.org/10.5539/hes.v7n1p46
Smith, K. L., Rayfield, J., &Mckim, B. R. (2015). Effective Practices in STEM Integration : Describing Teacher Perceptions and Instructional Method Use. Journal of Agricultural Education, 56(4), 182–201. https://doi.org/10.5032/jae.2015.04183
Springer, L., Stanne, M. E., &Donovan, S. S. (1999). Effects of small-group learning on undergraduates in science, mathematics, engineering, and technology: A meta-analysis. Review of Educational Research, 69(1), 21–51. https://doi.org/10.3102/00346543069001021
Stember, M. (1991). Advancing the social sciences through the interdisciplinary enterprise. The Social Science Journal, 28(1), 1–14. https://doi.org/10.1016/0362-3319(91)90040-B
Stohlmann, M., Moore, T., &Roehrig, G. (2012). Considerations for Teaching Integrated STEM Education. Journal of Pre-College Engineering Education Research, 2(1), 28–34. https://doi.org/10.5703/1288284314653
Sungur Gül, K., &Ateş, H. (2023). An examination of the effect of technology-based STEM education training in the framework of technology acceptance model. Education and Information Technologies, 28(7), 8761–8787. https://doi.org/10.1007/s10639-022-11539-x
Sungur Gul, K., Saylan Kirmizigul, A., Ates, H., &Garzon, J. (2023). Advantages and Challenges of STEM Education in K-12: Systematic Review and Research Synthesis. International Journal of Research in Education and Science, 9(2), 283–307. https://doi.org/10.46328/ijres.3127
Tal, R. T., Dori, Y. J., Keiny, S., &Zoller, U. (2001). Assessing conceptual change of techers involved in STES education and curriculum devleopment - The STEMS project approach. International Journal of Science Education, 23(3), 247–262. https://doi.org/10.1080/095006901750066501
Talib, C. A., Mohd Rafi, I. B., Rajan, S. T., Abd Hakim, N. W., Ali, M., &Thoe, N. K. (2019). Steam Teaching Strategies in Related Subject. Education, Sustainability And Society, 2(4), 14–18. https://doi.org/10.26480/ess.04.2019.14.18
Tsui, L. (2007). Effective strategies to increase diversity in STEM fields: A review of the research literature. Journal of Negro Education, 76(4), 555–581.
Vennix, J., denBrok, P., &Taconis, R. (2018). Do outreach activities in secondary STEM education motivate students and improve their attitudes towards STEM? International Journal of Science Education, 40(11), 1263–1283. https://doi.org/10.1080/09500693.2018.1473659
Vansteenkiste, M., Sierens, E., Goossens, L., Soenens, B., Dochy, F., Mouratidis, A., ... & Beyers, W. (2012). Identifying configurations of perceived teacher autonomy support and structure: Associations with self-regulated learning, motivation and problem behavior. Learning and instruction, 22(6), 431-439.
Walker, C. L., &Shore, B. M. (2015). Understanding classroom roles in inquiry education: Linking role theory and social constructivism to the concept of role diversification. SAGE Open, 5(4). https://doi.org/10.1177/2158244015607584
Wang, Y. H., &Chen, C. M. (2013). GIS Education in Taiwanese Senior High Schools: A National Survey Among Geography Teachers. Journal of Geography, 112(2), 75–84. https://doi.org/10.1080/00221341.2011.637227
Watson, A. D., &Watson, G. H. (2013). Transitioning STEM to STEAM Reformation. The Journal for Quality & Participation, 1–4.
Withambednarz, S. (2004). Geographic information systems: A tool to support geography and environmental education? GeoJournal, 60(2), 191–199. https://doi.org/10.1023/B:GEJO.0000033574.44345.c9
Wu, C. H., Liu, C. H., &Huang, Y. M. (2022). The exploration of continuous learning intention in STEAM education through attitude, motivation, and cognitive load. International Journal of STEM Education, 9(1). https://doi.org/10.1186/s40594-022-00346-y
Yakman, G. (2008). STEAM Education: an overview of creating a model of integrative education. Pupils Attitudes Towards Technology. STEAM Educational Model, February 2008.
Zhan, Z., Shen, W., Xu, Z., Niu, S., &You, G. (2022). A bibliometric analysis of the global landscape on STEM education (2004-2021): towards global distribution, subject integration, and research trends. Asia Pacific Journal of Innovation and Entrepreneurship, 16(2), 171–203. https://doi.org/10.1108/apjie-08-2022-0090

劉湘虎、陳欣珏、林美君、張俊彥(2020)。探討西元2000–2019年相關文獻不同目標結構下拼圖法合作學習在科學教育的應用。教育學報,51(2),51-75。
周坤億、楊淑晴、羅藝方(2022)。整合 TPACK 及素養導向的 STEAM 教學素養內涵初探。科學教育學刊,30,449–471。
周芬美、段曉林(2019)。以自我效能激發策略融入STEM統整活動對國中學生STEM學習效能之探討。科技與人力教育季刊,5(4),26–49。
張嘉育、林肇基(2019)。推動高等教育跨領域學習:趨勢、迷思、途徑與挑戰。課程與教學季刊,22(2),31–48。
林坤誼(2014)。STEM科際整合教育培養整合理論與實務的科技人才。科技與人力教育季刊,1(1)。
劉美慧、陳麗華、林江臺、洪承宇、洪逸文、張茂桂、許民陽、陳育霖、陳學淵、鄭詔月(2024)。【論壇】十二年國教課綱自然和社會領域「探究與實作」理念的溝通與實踐。教科書研究。17(1),157-184。
陳家騏、古建國(2017)。STEM 教學應用於高中探究與實作課程之行動研究 —以摩擦力為例。物理教育學刊,18(2),17–38。
湯維玲(2019)。探究美國STEM與STEAM教育的發展。課程與教學,22(2),49–77。
王伯仁、王瑋臻、吳岡旆(2019)。培養問題意識的學習方法:探究與實作的行動研究。地理研究,75,111–131。
王瑞壎(2022)。STEM / STEAM 跨領域科際整合教育之探究。臺灣教育評論月刊,11(4),13–20。
林小慧、吳心楷(2019)。科學探究能力評量之標準設定與其效度檢核。教育心理學報,50(3),473–502。
陳竹亭(2021)。探究與實作-臺灣大學陳竹亭教授專訪報導。師友雙月刊,627,19–28。
洪菁穗、吳心楷(2022)高中科學教師對「探究與實作」課程的概念:課程特徵、挑戰、教學目標與教學活動。科學教育學刊。30(1),1–26。
邱美虹(2018)。以科學素養為導向的新課綱---從社會性科學議題融入課程談起。臺灣教育評論月刊,7(10)。
蔡哲銘、邱美虹、曾茂仁、謝東霖(2020)。探討二階段專題導向的探究與實作課程中學生之學習成效。科學教育月刊,431,2-20。
任婉毓(2018)。幼兒繪本實現 STEAM 教育之探究。國立清華大學竹師教育學院幼兒教育學系碩士論文。
盧化茵(2022)。國中教師對STEAM融入教學意願之現況調查研究-以大臺北地區為例。淡江大學教育科技學系數位學習碩士在職專班碩士論文。
張芳瑜(2019)。高中生 STEM 職涯興趣量表之發展與效化。國立臺灣師範大學科技應用與人力資源發展學系碩士論文。
郭泓男(2013)。探討導入科學探究教學於科展培訓對學生科學探究能力之影響。國立臺灣師範大學科學教育研究所碩士論文。
蔡進雄(2019)。各國推動 STEM 教育的新動態。國家教育研究院電子報,第180期。2024年5月25日,取自https://epaper.naer.edu.tw/edm.php?grp_no=3&edm_no=180&content_no=3176。
張辰卿(2023)。想在美國留學工作?先搞懂何謂CPT、OPT。新頭條。2024年5月25日,取自https://www.thehubnews.net/archives/202004。
劉湘瑤(2016)。科學探究的教學與評量。科學研習,55(2)。國立臺灣科學教育館。
陳世文(2019)。普通型高中自然科學「探究與實作」課程推動初探。國家教育研究院電子報,第190期。2024年7月25日,取自https://epaper.naer.edu.tw/edm.php?grp_no=2&edm_no=190&content_no=3387。
陳竹亭(2017)。探究與實作的課程評量。大學入學考試中心。2024年7月25日,取自https://www.ceec.edu.tw/xcepaper/cont?xsmsid=0J066588036013658199&sid=0J116418318472723517。
陳竹亭(2018)。【108 課綱】探究與實作是什麼?怎麼考?。大學問。2024年7月25日,取自 https://www.unews.com.tw/News/Info/1068。
趙宥寧(2021)。北市探究與實作標準「被加嚴」審查原則到底是什麼?。聯合報。2024年7月25日,取自 https://udn.com/news/story/6898/5970237。
王伯仁(2020)。探究與實作—府城雅食。地理學科中心成果發表-探究與實作。2024年7月25日,取自https://ghresource.k12ea.gov.tw/uploads/1624839322616wL3EmjbO.pdf。
王伯仁(2020)。發現問題、確定問題與子問題、研究設計與方法選定。地理學科中心成果發表-探究與實作。2024年7月25日,取自https://ghresource.k12ea.gov.tw/uploads/1624839331558u5Ddj2Wt.pdf。
吳岡旆(2020)。探究與實作發現問題(學術情境)、確定問題與子問題、研究設計與方法選定。地理學科中心成果發表-探究與實作。2024年7月25日,取自https://ghresource.k12ea.gov.tw/uploads/1624839341587E6QjWsRR.pdf。
王瑋臻(2020)。探究與實作問題(學術情境)。地理學科中心成果發表-探究與實作。2024年7月25日,取自https://ghresource.k12ea.gov.tw/uploads/1624839348757VxjnxSYU.pdf。
鄒怡婉、陳嘉旻(2020)。質性研究設計與方法。地理學科中心成果發表-探究與實作。2024年7月25日,取自https://ghresource.k12ea.gov.tw/uploads/1624839360519pMr1HtW3.pdf。
李品臻(2020)。創意思考與行動方案。地理學科中心成果發表-探究與實作。2024年7月25日,取自https://ghresource.k12ea.gov.tw/uploads/1624839399463X7ouVsQA.pdf。
國家教育研究院(2018)。十二年國民基本教育課程綱要總綱。2024年5月25日,取自https://www.naer.edu.tw/upload/1/16/doc/十二年國教課程綱要總綱.pdf
教育部(2021)十二年國民基本教育課程綱要總綱(103年11月發布,110年2月修正)。2024年5月25日,取自https://cirn.moe.edu.tw/Upload/file/35950/96151.pdf
教育部國民及學前教育署(2003)。92年國民中小學九年一貫課程綱要。2024年7月23日,取自https://www.k12ea.gov.tw/Tw/Common/SinglePage?filter=22ABAF7F-245B-4966-AC87-9388AA1504BC。
教育部國民及學前教育署(2008)。國民中小學九年一貫課程綱要自然與生活科技學習領域。2024年7月23日,取自https://www.k12ea.gov.tw/files/97_sid17/自然與生活科技970917定稿單冊.pdf。

無法下載圖示 電子全文延後公開
2027/08/31
QR CODE