簡易檢索 / 詳目顯示

研究生: 楊逸斌
論文名稱: 陰離子共聚物的合成及做為水系鈦酸鋇漿體的分散劑
指導教授: 許貫中
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 83
中文關鍵詞: 鈦酸鋇聚合物合成分散鋇離子溶出
英文關鍵詞: barium titanante, polymer, synthesis, dispersion, leached Ba2+
論文種類: 學術論文
相關次數: 點閱:211下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在鈦酸鋇電子陶瓷的製程,要得到穩定性高且分散良好的漿料必須添加分散劑。本篇論文主要合成一種陰離子型聚合物聚(二(二甲基丙烯酯)乙基磺酸鈉/甲基丙烯醯胺) (PMEA)作為分散劑探討,不同分子量的PMEA對於鈦酸鋇水系漿體分散性質的影響。
    合成之PMEA以IR和1H-NMR光譜確認其結構,並利用GPC測定得到其重量平均分子量分別為 4.1×105,1.3×105,6.0×104,1.6×104。
    添加共聚物對於鈦酸鋇漿體穩定性影響的研究方法有流變行為、沈降體積及粒徑分布測試,並利用界達電位及吸附量等實驗來解釋。經由壓胚及燒結,測量胚體之生胚、燒結密度、介電常數及介電損失。另外,利用ICP-MASS來測量鈦酸鋇漿體中Ba2+的含量。實驗結果發現添加PMEA (Mw =1.3×105) 在鈦酸鋇漿體的分散效果優於其他分子量之聚合物,因PMEA (Mw =1.3×105) 於鈦酸鋇粒子表面有較大的吸附量使粒子有較高的界達電位、較小的粒徑及漿體有較低的黏度並可使粒子分散均勻、堆積緻密而有較高的生胚與燒結密度。最後,添加PMEA能減少漿體中鋇離子的溶出。

    In the preparation of a well-dispersed, and stable barium titanate (BT)
    slurry, the addition of dispersants is essential. This study is to synthesize
    an anionic copolymer, i.e., poly-[sodium 2-(2-methyl-acryloyloxy)
    ethansulfonate methacrylamide] (PMEA) as a dispersant for BT slurries.
    The chemical structure of synthesize PMEAs were varied from the IR and
    1H-NMR spectra, and the weight-average molecular weights (Mw) of the
    copolymers determind by GPC to be 4.1×105,1.3×105,6.0×104 and
    1.6×104.
    The dispersion properties of PMEA were examined by measuring the
    rheological property, sedimentation, and particle size of BT suspensions.
    The zeta potential and adsorption experiments were carried out. The
    green and sintered density of BT compacts were determind. Besides, the
    barium ions leached from BT particles in aqueous solutions were also
    measured results indicate that addition of PMEA can reduce the viscosity,
    stabilize the BT suspensions, reduce the particle size, and make BT
    compacts with higher green and sintered density, PMEA with Mw of
    1.3×105 is more effective because the adsorption amount onto particle
    was greater and the achieved zeta potential more negative than polymers
    with other Mw. Finally, PMEA could reduce the leached barium ion in the
    BT suspensions.

    第一章 緒論 1 第二章 文獻回顧 2 2-1 鈦酸鋇粉末 2 2-1-1 鈦酸鋇粉末之簡介 2 2-1-2 鈦酸鋇粉末之相圖及結構 2 2-2 分散原理 2 2-2-1 粒子之特性 2 2-2-2 膠體粒子表面間的作用力及其分散機制 3 2-3 分散劑對陶瓷漿體的重要性 6 2-4 分散劑效能評估 6 2-4-1 流變實驗 6 2-4-2 粒徑分布 7 2-4-3 沉降體積 8 2-4-4 吸附行為 9 2-4-5 表面電位 10 2-5 鋇離子溶出量 11 2-6 鈦酸鋇的介電特性 12 第三章 實驗方法與流程 22 3-1 實驗流程 22 3-2 實驗方法 22 3-2-1 陰離子型聚合物PMEA之合成 22 3-2-2 聚合物之結構鑑定及性質分析 22 3-2-3 鈦酸鋇材料之晶相分析 22 3-2-4 聚合物對鈦酸鋇漿體之分散效果分析 22 3-3 實驗材料與實驗設備 23 3-3-1 鈦酸鋇(BT)粉末: 23 3-3-2 藥品: 23 3-3-2 實驗設備: 23 3-4 聚合物之合成 25 3-5 BT粉末晶相分析 26 3-6 高分子結構鑑定及性質分析 26 3-6-1 核磁共振(1H-NMR)光譜分析 26 3-6-2 紅外線(IR)光譜分析 26 3-6-3 聚合單體比例分析 26 3-6-4 凝膠滲透層析(GPC)分析 27 3-6-5 聚合物解離率的量測 27 3-7 聚合物對BT漿體之分散性質分析 27 3-7-1 漿體的配製 27 3-7-2 流變性質量測 28 3-7-3 吸附量的量測 28 3-7-4 沈降體積量測 28 3-7-5 粒徑分佈量測 29 3-7-6 界達電位量測 29 3-7-7 胚體密度 29 3-7-8 鋇離子溶出量 30 3-7-9 介電常數與介電損失 31 3-7-10 微結構分析 32 第四章 聚合物之性質分析 36 4-1 聚合物之結構鑑定 36 4-1-1 PMEA 之結構鑑定 36 4-2 聚合物單體比例 36 4-3 聚合物之分子量 37 4-4 聚合物在不同pH值之解離率 37 4-4-1 PMEA 之解離率 38 第五章 漿體性質測試 44 5-1 聚合物對BT漿體流變行為之影響 44 5-2 聚合物對BT粒子吸附行為之影響 47 5-3 聚合物對BT粒子界達電位之影響 54 5-4 聚合物對BT漿體粒徑分佈之影響 57 5-5 聚合物對BT漿體沉降體積之影響 62 5-5-1 PMEA 對BT漿體之沉降體積 62 5-6 聚合物對BT胚體密度之影響 69 5-6-1 不同聚合物對BT胚體密度之影響 69 5-7 聚合物對BT微胚體結構之影響 72 5-8 聚合物對BT漿體鋇離子溶出之影響 76 5-9 聚合物對BT介電性質之影響 79 第六章 結論 80 第七章 參考資料 83 圖目錄 圖 2-1-1 BaO-TiO2系統的相圖 13 圖 2-1-2 鈦酸鋇之鈣鈦礦結構 13 圖 2-2-1 粒子的凝聚或分散狀態 14 圖 2-2-2 電雙層示意圖 14 圖 2-2-3 粒子間因立體阻障而分離 15 圖 2-2-4 共聚物吸附於多個粒子上而產生架橋現象 15 圖 2-2-5 聚合物分子構形隨 pH 值及離子強度變化而改變 16 圖 2-2-6 粒子能量與距離之關係圖 16 圖 2-2-7 粒子彼此分散或凝聚 17 圖 2-2-8 粒子因彼此間的斥力而分散 17 圖 2-4-1-1 漿體的流變行為:(a) Newtonian flow;(b) shear thinning;(c) shear thickening;(d) Bingham plastic;and (e) pseudoplastic with a yield stress 20 圖 2-4-3-1 (1) 分散良好 (2) 產生凝聚之懸浮液 20 圖 2-6-1 鈦酸鋇之晶粒大小和介電常數的關係 21 圖 3-1-1 實驗流程圖 (一) 34 圖 3-1-2 實驗流程圖 (二) 34 圖 3-4-1 PMEA 之合成 35 圖 4-1-1 PMEA 之 1H – NMR 光譜圖 39 圖 4-1-2 PMEA 之 FT - IR 光譜圖表 4-2-1 PMEA 性質分析 39 圖 4-2-1 PMEA (進料比 MES / MAAM = 9 / 1) 之滴定曲線 41 圖 4-2-2 PMEA 滴定曲線之ㄧ次微分圖 ……………………………..41 圖 4-3-1 GPC 之分子量檢量線 42 圖 4-3-2 PMEA 之分子量分佈圖 42 圖 4-3-3 Darvan C 之分子量分佈圖 43 圖 4-4-1 PMEA 在不同 pH 值下之解離率 43 圖 5-1-1 聚合物對 60 wt% BT漿體黏度之影響 (pH = 9) 46 圖 5-1-2 聚合物對 60 wt% BT漿體黏度之影響 (轉速= 60 rpm;pH = 9) 46 圖 5-2-1 聚合物在BT粒子上的吸附量 49 圖 5-2-2 聚合物之 Ce/Cads 對 Ce 圖 49 圖 5-2-3 PMEA (1) 在BT粒子上之動態吸附圖 50 圖 5-2-4 PMEA (13) 在BT粒子上之動態吸附圖 50 圖 5-2-5 PMEA (41) 在BT粒子上之動態吸附圖 51 圖 5-2-6 Darvan C 在BT粒子上之動態吸附圖 51 圖 5-2-7 球磨時間與聚合物吸附量之關係圖 52 圖 5-3-1不同pH值下BT粒子之界達電位 56 圖 5-3-2 聚合物對BT粒子界達電位的影響 56 圖 5-4-1 PMEA (1) 添加量對粒子粒徑大小的影響 58 圖 5-4-2 PMEA (6) 添加量對粒子粒徑大小的影響 58 圖 5-4-3 PMEA (13) 添加量對粒子粒徑大小的影響 59 圖 5-4-4 PMEA (41) 添加量對粒子粒徑大小的影響 59 圖 5-4-5 Darvan C添加量對粒子粒徑大小的影響 60 圖 5-4-6 各聚合物對粒子 D50 粒徑之比較 60 圖 5-4-7 各聚合物對於粒子粒徑分佈之比較 61 圖 5-5-1 添加PMEA (1) 之20 wt% BT漿體的沉降體積 (a) 7天 (b) 14天 (c) 21天 (d) 28天 64 圖 5-5-2 PMEA (1) 對漿體沉降高度的影響 64 圖 5-5-3 添加PMEA (6) 之20 wt% BT漿體的沉降體積 (a) 7天 (b) 14天 (c) 21天 (d) 28天 65 圖 5-5-4 PMEA (6) 對漿體沉降高度的影響 65 圖 5-5-5 添加PMEA (13) 之20 wt% BT漿體的沉降體積 (a) 7天 (b) 14天 (c) 21天 (d) 28天 66 圖 5-5-6 PMEA (13) 對漿體沉降高度的影響 66 圖 5-5-7 添加PMEA (41) 之20 wt% BT漿體的沉降體積 (a) 7天 (b) 14天 (c) 21天 (d) 28天 67 圖 5-5-8 PMEA (41) 對漿體沉降高度的影響 67 圖 5-5-9 添加 Darvan C之20 wt% BT漿體的沉降體積 (a) 7天 (b) 14天 (c) 21天 (d) 28天 68 圖 5-5-10 Darvan C對漿體沉降高度的影響 68 圖 5-6-1 添加不同聚合物對BT胚體生胚密度的影響 71 圖 5-6-2 添加不同聚合物對BT燒結密度的影響 71 圖 5-7-1 未添加聚合物之BT生胚 SEM 圖 (pH=9) 73 圖 5-7-2 添加Darvan C之BT生胚SEM圖 (pH=9) 73 圖 5-7-3 添加PMEA (1) 之BT生胚SEM圖 (pH=9) 74 圖 5-7-4 添加PMEA (6) 之BT生胚SEM圖 (pH=9) 74 圖 5-7-5 添加PMEA (13) 之BT生胚SEM圖 (pH=9) 75 圖 5-7-6 添加PMEA (41) 之BT生胚SEM圖 (pH=9) 75 圖 5-8-1 20 wt% 的BT漿體在球磨 24 hr前後的 pH 值變化 77 圖 5-8-2 ICP-MS Ba2+ 檢量線 77 圖 5-8-3 聚合物對鋇離子溶出的影響 78 表目錄 表 2-3-1 粉體分散性質之相關文獻彙集 18 表 3-3-1 鈦酸鋇粉末之性質 33 表 4-2-1 PMEA 性質分析 40 表 4-2-2 聚合物性質比較 40 表 5-2-1 各聚合物在BT 粉末上的飽和吸附量 (60 wt% 漿體) 53 表 5-2-2 各聚合物在 BT 粉末上的動態與24 hr吸附量比較 (60 wt% 漿體) 53 表 5-9-1 聚合物對介電性質之影響 79

    1. W. J. Tseng and C. H. Wu, Sedimentation, rheology and particle-packing
    structure of aqueous Al2O3 suspensions, Ceram. Int. 29 (2003) 821–828

    2. Z. G. Shen, J. F. Chen, H. K. Zou and J. Yun, Dispersion of nanosized aqueous suspensions of barium titanate with ammonium polyacrylate, J. Colloid Interface Sci. 275 (2004) 158–164

    3. K. W. Kirby and B. A. Wechsler, Phase relations in bartium titanate-titanate oxide
    system, J. Am. Ceram. Soc. 74 (1991) 1841-1846

    4. S. Baklouti, T. Chartier and J. F. Baumard, Mechanical properties of dry-pressed
    ceramic green products: the effect of the binder, J. Am. Ceram. Soc. 80 [8]
    (1997) 1992–96

    5. S. Baklouti, T. Chartier and J. F. Baumard, Binder distribution in spray – dried
    alumina agglomerates, J. Eur. Ceram. Soc. 18 (1998) 2117-2121

    6. Z. C. Chen, T. A. Ring and J. Ixmaitre, Stabilization and processing of aqueous
    BaTiO3, suspension with polyacrylic acid, J. Am. Ceram. Soc. 75 [12] (1992)
    3201–08

    7. D. H. Yoon, B. I. Lee, P. Badheka and X. Wang, Barium ion leaching from
    barium titanate powder in water, J. Mat. Sci : Mat. Electronics 14 (2003)
    165-169

    8. R. G. Horn, Surface forces and their action in ceramic materials, J. Am. Ceram.
    Soc. 73 (5) (1990) 1117–1135.

    9. J. A. Lewis, Colloidal processing of ceramics, J. Am. Ceram. Soc. 83 (2000)
    10. J. H. Jean and H. R. Wang, Dispersion of aqueous barium titanate suspensions
    with ammonium salt of poly(methacrylic acid), J. Am. Ceram. Soc. 81 (1998)
    1589 -1599

    11. M. C. Blanco-Lopez, B. Rand and F. L. Riley, The properties of aqueous phase
    suspensions of barium titanate, J. Eur. Ceram. Soc. 17 (1997) 281-287

    12. W. R. Buessem, L. E. Cross, and A. K. Goswami, Phenomenological theory
    of high permittivity in fine-grained barium titanate, J. Am. Ceram. Soc. 49
    (1966) 33 – 36

    13. 陳志豪,”高分子分散劑的合成以及對於鈦酸鋇粉末的分散性質” 國立台
    灣師範大學化學研究所碩士論文,2005。

    14. 鍾子敏,”陰離子型分散劑分子量對介電陶瓷分散性的影響” 國立台灣師
    範大學化學研究所碩士論文,2004。

    15. Y. Liu and L. Gao, Dispersion of aqueous alumina suspensions using
    copolymers with synergistic functional groups, Mat. Chem. Phy. 82 (2003)
    362–369

    16. M. R. B. Romdhane, S. Baklouti, J. Bouaziz, T. Chartier and J.-F. Baumardb,
    Dispersion of Al2O3 concentrated suspensions with new molecules able to act
    as binder, J. Eur. Ceram. Soc. 24 (2004) 2723–2731

    17. S. Baklouti, M. R. B. Romdhane, S. Boufi, C. Pagnoux, T. Chartier and J. F. Baumard, Effect of copolymer dispersant structure on the properties of alumina suspensions, J. Eur. Ceram. Soc. 23 (2003) 905–911

    18. D. H. Yoon and B. I. Lee, Effects on aqueous barium titanate tape
    properties of passivation of barium ion leaching by using dispersants,
    J. Eur. Ceram. Soc. 24 (2004) 3747–3752

    19. J. H. Jean and H. R. Wang, Effects of solids loading, pH, and
    polyelectrolyte addition on the stabilization of concentrated aqueous
    BaTiO3 suspensions, J. Am. Ceram. Soc. 83 [2] (2000) 277–80

    20. K. L. Ying and T. E. Hsieh, Sintering behaviors and dielectric properties of
    nanocrystalline barium titanate, Mat. Sci. Eng. B 138 (2007) 241–245

    21. Y. L. Song , X. L. Liu, J. Q. Zhang, X. Y. Zou and J. F. Chen,
    Rheological properties of nanosized barium titanate prepared by HGRP
    for aqueous tape casting, Powder Technology 155 (2005) 26 – 32

    22. I. M. G. d. Santos, A.G.d. Souza, F. R. Sensato, E.R. Leite, E. Longo and J. A.
    Varela, Rheological properties of tin oxide suspensions, J. Eur. Ceram. Soc.
    22 (2002) 1297-1306

    23. B. Y. Yu, W. C. J. Wei and K. C. Hsu, Study of processing adsorption
    mechanism of amphoteric polyelectrolyte in BaTiO3 colloids suspension,
    J. Ceram. Pro. Res. 5 (2004) 163~170

    24. L. Saravanan and S. Subramanian, Surface chemical studies on the competitive
    adsorption of poly(ethylene glycol) and ammonium poly(methacrylate) onto
    zirconia, Colloids Surf. A 252 (2005) 175–185

    25. C. J. Shih and M. H. Hon, Stability of colloidal silicon nitride suspension with
    poly-electrolyte, Ceram. Int. 26 (2000) 47-55

    26. Q. Tan, Z. Zhang, Z. Tang, S. Luo and K. Fang, Influence of polyelectrolyte
    dispersant on slip preparation of nano-sized tetragonal polycrystals zirconia for
    aqueous-gel-tape-casting process, Mat. Chem. Phy. 80 (2003) 615-619

    27. A. Pettersson, G. Marino, A. Pursiheimo, J. B. Rosenholm, Electrosteric
    stabilization of Al2O3, ZrO2, and 3Y-ZrO2 suspensions: effect of dissociation
    and type of polyelectrolyte, J. Colloid Interface Sci. 228 (2000) 73-81

    28. J. Sun and L. Gao, Dispersing SiC powder and improving its rheological
    behaviour, J. Eur. Ceram. Soc. 21 (2001) 2447-2451

    29. K. L. Ying, K. C. Hsu, W. C. J. Wei, An amphoteric water-soluble copolymer. Ⅱ. effect of its molecular weight on dispersion of barium titanate in water, J. Appl. Polym. Sci. 100 (2006) 886-891

    30. 陳龍賓,“分散劑的合成以及對於鈦酸鋇漿體分散性能的評估” 國立台灣師
    範大學化學研究所碩士論文, 2002。

    31. 朱立文,“化學法製備奈米級 Ba-Ti-O 介電粉體及其分散應用性之探討”
    國立清華大學化學工程學系博士論文,2006

    32. S. Farrokhpay, G. E. Morris, D. Fornasiero and P Self, Effects of chemical
    functional groups on the polymer adsorption behavior onto titania pigment
    particles, J. Colloid Int. Sci. 274 (2004) 33–40

    33. A. Seal, D. Chattopadhyay, A. D. Sharma, A. Sen and H. S. Maiti, Influence of
    ambient temperature on the rheological properties of alumina tape casting
    slurry, J. Eur. Ceram. Soc. 24 (2004) 2275–2283

    34. B. P. Singh, R. Menchavez, C. Takai, M. Fuji and M. Takahashi, Stability of dispersions of colloidal alumina particles in aqueous suspensions, J. Colloid Interface Sci. 291 (2005) 181–186

    35. K. Cai, M. Ode and H. Murakami, Influence of polyelectrolyte dispersants on
    the surface chemical properties of aluminum in aqueous suspension, Colloids
    Surf. A 284–285 (2006) 458–463

    36. M. R. B. Romdhane, S. Boufi, S. Baklouti, T. Chartier and J.-F. Baumard,
    Dispersion of Al2O3 suspension with acrylic copolymers bearing carboxylic
    groups, Colloids Surf. A 212 (2003) 271-283

    37. T. Chartierb, Dispersion of Al2O3 concentrated suspensions with new molecules
    able to act as binder, J. Eur. Ceram. Soc. 24 (2004) 2723–2731

    38. J. Zhao, X. Wang, Z. Gui and L. Li, Dispersion of barium titanate with
    poly(acrylic acid-co-maleic acid)in aqueous media, Ceram. Int. 30 (2004)
    1985–1988

    39. W. J. Tseng, S.Y. Li, Effect of polysaccharide polymer on sedimentation
    and rheological behavior of aqueous BaTiO3 suspensions, J. Mat. Pro. Tech.
    142 (2003) 408–414

    40. B. P. Singh, S. Bhattacharjee, L. Besra and D. K. Sengupta, Evaluation of
    dispersibility of aqueous alumina suspension in presence of Darvan C, Ceram.
    Int. 30 (2004) 939–946

    41. B. P. Singh, R. Menchavez, C. Takai, M. Fuji and M. Takahashi, Stability of
    dispersions of colloidal alumina particles in aqueous suspensions, J. Colloid
    Interface Sci. 291 (2005) 181–186

    42. H. Bouhamed,S. Boufi, and A. Magnin, Alumina interaction with
    AMPS–MPEG random copolymers I. adsorption and electrokinetic behavior,
    J. Colloid Interface Sci. 261 (2003) 264–272

    43. M. Ramzi Ben Romdhane, Samir Baklouti, and Jamel Bouaziz, Dispersing
    properties of copolymers able to act as binders, J. Am. Ceram. Soc., 89 [1]
    104–109 (2006)

    44. J. Sun, L. Gao and J. Guo, Influence of the Initial pH on the Adsorption
    Behaviour of Dispersant on Nano Zirconia Powder, J. Eur. Ceram. Soc. 19
    (1999) 1725-1730

    45. X. Wang, B. I. Lee and L. Mann, Dispersion of barium titanate with
    polyaspartic acid in aqueous media, Colloids Sur. A 202 (2002) 71–80

    46. 應國良,“鈦酸鋇漿體分散劑的合成與應用”國立台灣師範大學化學研究
    所碩士論文,2003

    47. D. Santhiya, G. Nandini, S. Subramanian, K.A. Natarajan and S.G. Malghan,
    Effect of polymer molecular weight on the adsorption of polyacrylic acid at the
    alumina-water interface, Colloids Sur. A 133 (1998) 157-163

    48. A. Degen and M. Kosec, Influence of pH and ionic impurities on the
    adsorption of poly(acrylic) dispersant onto a zinc oxide surface, J. Am.
    Ceram.Soc. 86 [12] (2003) 2001–10

    49. F. Shojai, A.B.A. Pettersson, T. MaÈ ntylaÈ and J.B. Rosenholm,
    Electrostatic and electrosteric stabilization of aqueous slips of 3Y-ZrO2 powder,
    J. Eur. Ceram. Soc. 20 (2000) 277-283

    50. Z. G. Shen, J. F. Chen, H. K. Zou and J. Yun, Dispersion of nanosized aqueous
    suspensions of barium titanate with ammonium polyacrylate, J. Colloid
    Interface Sci. 275 (2004) 158–164

    51. Y. Liu, L. Gao and J. Sun, Effect of acrylic copolymer adsorption on the
    colloidal stability of a 3Y-TZP suspension, J. Eur. Ceram. Soc. 22 (2002)
    863–871

    52. 吳杏璇,“添加陰離子型分散劑之鈦酸鋇漿體在不同pH值下的分散行為”
    國立台灣師範大學化學研究所碩士論文,2004。

    53. C. W. Chiang and J. H. Jean, Effects of barium dissolution on dispersing
    aqueous barium titanate suspensions, Mater. Chem. Phys. 80 (2003) 647–655

    54. W. M. Sigmund, Novel Powder-Processing Methods for Advanced Ceramics,
    J. Am. Ceram. Soc. 83 [7] (2000) 1557–74

    55. J. S. Reed, Introduction to the principles of ceramic processing, John Wiley &
    Sons, Inc., Singapore, 1989

    無法下載圖示 本全文未授權公開
    QR CODE