研究生: |
李明承 Ming-Cheng Li |
---|---|
論文名稱: |
整合光輔助電化學穿孔蝕刻與微電鑄技術應用於微金屬柱陣列之研製 Fabrication of metal micropillars array by integrating photo-assisted electrochemical etching through-holes and electroforming techniques |
指導教授: |
程金保
Cheng, Chin-Pao 楊啟榮 Yang, Chii-Rong |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 微機電系統 、電化學蝕刻 、微電鑄技術 |
英文關鍵詞: | micro electro mechanical system, electrochemical etching, electroforming technology |
論文種類: | 學術論文 |
相關次數: | 點閱:284 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將整合光輔助電化學蝕刻(ECE)與精密電鑄技術,以開發高密度金屬垂直結構陣列之製程技術。利用改變光照強度與電流密度等實驗條件,以電化學蝕刻達到矽晶圓高密度微穿孔的目的,再利用精密電鑄技術進行穿孔之金屬導體填充,如此可實現高密度金屬垂直結構陣列。未來可應用於積體化探針陣列之製作,或利用晶圓內垂直導體而實現晶圓級堆疊封裝之目的。此技術開發有設備與製程成本低、可積體化生產、與半導體製程相容性高、批次生產與良率高等特點。
基於上述,本研究利用自行開發之低成本電化學蝕刻(ECE)設備,順利測得相關製程之最佳參數。由實驗結果已驗證,在利用電化學蝕刻技術製作高深寬比微孔洞陣列方面,當蝕刻時間達到31.5小時,可得高深寬比之結構。所用之晶片為n-type (100),其蝕刻液為2.5 wt.%之氫氟酸溶液,陽極放置矽晶片,陰極為白金,獲得之穿孔其邊長為40 mm,深寬比約為12.5,證明利用此技術已能局部取代乾式蝕刻之應用領域。在金屬柱電鑄方面,利用正負脈衝電流,使金屬柱陣列能順利成形,其金屬柱高度約500 mm,深寬比約為12.5。
This research will integrate photo-assisted electrochemical etching (ECE) and electroforming techniques for fabricating high-density metal micropillars. This process is described as followed: high-density through holes in silicon are etched by photo-assisted electrochemical etching under various paramerers; then the through holes are fully filled by copper electroforming technique to form high-density metal micropillars. The deveploed technology will be promising for the application of integrated probe array and wafer-level package in the further.
Because of the above-mentioned, this research used the low-cost electrochemical etching (ECE) equipment developed by ourselves and got the best parameters of the related manufacture. The experiment result proved that the technology had been able to partially replace the dry etching technology. Using the ECE technology to fabricate high aspect of micro-pores array, we can get the structures of high aspect when the etching time reached 31.5 hours. Through-holes were formed by selective partial electropolishing in a 2.5 wt.% HF electrolytic solution, using an N-type, (100)-oriented Si wafer as an anode, and a Pt plate as a cathode. The obtained holes were square through-holes of 40 mm side length, with an aspect ratio of 12.5. Metal micropillars was made by electroforming technology with pulse and reverse current. The height of metal micropillars achieves 500 mm and the aspect ratio cab reach 12.5.
1. 楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章, (2003) pp. 141-319.
2. M. D. B. Charlton, H. W. Lau, and G. J. Parker, "High aspect ratio photo-assisted electro-chemical etching of silicon and its application for the fabrication of quantum wires and photonic band structures", IEE Colloquium on Microengineering Applications in Optoelectronics, (1996) pp. 1-9.
3. A. Satoh, "Formation of through-holes on silicon wafer by optical excitation electropolishing method", Japanese Journal of Applied Physics, Vol. 39, (2000) pp. 378-386.
4. V. Lehmann and H. Föll, "Formation mechanism and properties of electrochemically etched trenches in n-type silicon", Journal of the Electrochemical Society, Vol. 137, (1990) pp. 653-658.
5. V. Lehmann and U. Grüning, "The limits of macropore array fabrication", Thin Solid Films, Vol. 297, (1997) pp. 13-17.
6. V. Lehmann, "The physics of macropore formation in low-doped n-type silicon", Journal of the Electrochemical Society, Vol. 140, (1993) pp. 2836-2843.
7. V. Lehmann, "Porous silicon formation and other photo-electrochemical effects at silicon electrodes anodized in hydrofluoric acid", Applied Surface Science, Vol. 106, (1996) pp. 402-405.
8. V. Lehmann, "Porous silicon-a new material for MEMS", Proc. of Micro Electro Mechanical System Workshop, California, USA, (1996) pp. 1-6.
9. A. Uhir, "Electrolytic shaping of germanium and silicon", Bell System Technical Journal, Vol. 35, (1956) pp. 333-547.
10. S. Izuo, H. Ohji, and P. J. French, "A novel electrochemical etching technique for n-type silicon", Sensors and Actuators A, Vol. 97, (2002) pp. 720-724.
11. G. Barillaro, A. Nannini, and M. Piotto, "Electrochemical etching in HF solution for silicon micromachining", Sensors and Actuators A, Vol. 102, (2002) pp. 195-201.
12. H. Ohji, P.J. French, and K. Tsutsumi, "Fabrication of mechanical in p-type silicon using electrochemical etching", Sensors and Actuators, Vol. 82, (2000) pp. 254-258.
13. H. Ohji, P.J. Trimp, and P.J. French, "Fabrication of free standing structure using single step electrochemical etching in hydrofluoric acid", Sensors and Actuators, Vol. 73, (1999) pp. 95-100.
14. A. Satoh, "Formation of through-holes on silicon wafer by optical excitation electropolishing method", Japanese Journal of Applied Physics, Vol. 39, (2000) pp. 378-386.
15. H.R. Robbins and B. Schwartz, "Chemical etching of silicon-I. The system HF, HNO3, H2O, and HC2C3O2", Journal of the Electrochemical Society, Vol. 106, (1959) pp. 505-508.
16. H.R. Robbins and B. Schwartz, "Chemical etching of silicon-II. The system HF, HNO3, H2O, and HC2C3O2", Journal of the Electrochemical Society, Vol. 107 (2), (1960) pp. 108-111.
17. B. Schwartz and H. R. Robbins, "Chemical etching of silicon-III. A temperature study in the acid system", Journal of the Electrochemical Society, Vol. 108, (1961) pp. 365-372.
18. G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, "Bulk Micromachining of Silicon", Proceedings of the IEEE, Vol. 86, (1998) pp. 1536-1551.
19. M. Elwenspoek, "The form of etch rate minima in wet chemical anisotropic etching of silicon", Journal of Micromechanical and Microengineering, Vol. 6, (1996) pp. 405-409.
20. B. Schwartz and H. R. Robbins, "Chemical etching of silicon", Journal of the Electrochemical Society, Vol. 123, (1976) pp. 1903-1909.
21. A. F. Bogenschutz, W. Krusemark, K.H. Locherer, and W. Mussinger, "Activation energies in the chemical etching of semiconductors in HNO3-HF-CH3COOH", Journal of the Electrochemical Society: Solid State, Vol. 114, (1967) pp. 970-973.
22. L. Walter, "Silicon microstructuring technology", Materials science and engineering, Vol. 17, (1996) pp. 1-55.
23. D. B. Lee, "Anisotropic etching of silicon", Journal of Applied physics, Vol. 40, (1969) pp. 4569-4574.
24. P. J. Hesketh, C. Ju, and S. Gowda, "Surface free energy model of silicon anisotropic etching", Journal of the Electrochemical Society, Vol. 140, (1993) pp. 1080-1084.
25. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, "Anisotropic etching of crystalline silicon in alkaline solution-Part I. Orientation dependence and behavior of passivation layer", Journal of the Electrochemical Society, Vol. 137, (1990) pp. 3612-3626.
26. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, "Anisotropic etching of crystalline silicon", Journal of the Electrochemical Society, Vol. 137, (1990) pp. 3626-3632.
27. D. R. Ciarlo, "Corner compensation structures for (110) oriented silicon", IEEE Micro Robots and Teleoperators Workshop, (1987) pp. 1-4.
28. O. Powell and H B. Harrison, "Anisotropic etching of {100} and {110} planes in (100) silicon", Journal of Micromechanics and Microengineering, Vol. 11, (2001) pp. 217-220.
29. 鍾震桂 等人, "感應耦合電漿的矽非均性蝕刻技術", 第三屆奈米工程暨微系統技術研討會, Vol. 3, (1999) pp. 83-87.
30. R. B. Bosch Gmbh, U.S. patents No.4855017, U.S. patents No.4784720, and Germany Patent No. 4241045C1 (1994).
31. M. Hynes, H. Ashraf, J. K. Bhardwaj, J. Hopkins, I. Johnston, and J. N. Shepherd, "Recent advances in silicon etching for MEMS using the ASE process", Sensors and Actuators A, Vol. 74, (1999) pp. 13-17.
32. J. K. Bhardwaj and H. Ashraf, "Advanced silicon etching using high density plasmas", SPIE, Vol. 2639, (1995) pp. 225.
33. 楊啟榮 等人, "微系統類LIGA製程光刻技術", 科儀新知, Vol. 22, (2001) pp. 33-45.
34. R. L. Smith and S. D. Collins, "Porous silicon formation mechanisms", Journal of Applied Physics, Vol. 71, (1992) pp. 1-22.
35. V. Lehmann and S. Ronnebeck, "The physics of macropore formation in low-doped p-type silicon", Journal of the Electrochemical Society, Vol. 146, (1999) pp. 2968-2975.
36. 吳浩青 等人, "電化學動力學", 科技圖書股份有限公司, (2001) pp. 179-183.
37. X. Badel, "Electrochemically etched pore arrays in silicon for X-ray imaging detectors", Ph.D Thesis, The Royal Institute of Technology, (2005) pp. 4-21.
38. M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew, and A. G. Cullis, "An experimental and theoretical study of the formation and microstructure of porous silicon", Journal of Crystal Growth, Vol. 73, (1985) pp. 622-636.
39. M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cullis, and J. D. Benjamin, "Microstructure and formation mechanism of porous silicon", Applied Physics Letters, Vol. 46, (1985) pp. 86-88.
40. X. G. Zhang, S. D. Collins, and R. L. Smith, "Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution", Journal of the Electrochemical Society, Vol. 136, (1989) pp. 1561-1565.
41. X. G. Zhang, "Mechanism of pore formation on n-type silicon", Journal of the Electrochemical Society, Vol. 138, (1991) pp. 3750-3756.
42. T. Unagami, "Formation mechanism of porous silicon layer by anodization in HF solution", Journal of the Electrochemical Society, Vol. 127, (1980) pp. 476-483.
43. R. L. Smith, S. F. Chuang, and S. D. Collins, "A theoretical model of the formation morphologies of porous silicon", Journal of Electronic Materials, Vol. 17, (1988) pp. 533-541.
44. W. Ehrfeld, V. Hessel, H. Löwe, C. Schulz, L. Weber, “Materials of LIGA technology”, Microsystem Technologies, Vol. 5, No. 3, (1999) pp. 105-112.