簡易檢索 / 詳目顯示

研究生: 奚梓成
Chee, Tsz-Shing
論文名稱: 使用GPT-3語言模型輔助探討WhatsApp隱私條款事件對用戶使用行爲與態度之影響
Using GPT-3 LLM Examining The Impact of WhatsApp's 2021 Privacy Policy Update on User Behavior and Attitudes Intentions
指導教授: 蔣旭政
Chiang, Hsu-Cheng
口試委員: 楊凱翔
Yang, Kai-Hsiang
陳聖智
Chen, Sheng-Chih
蔣旭政
Chiang, Hsu-Cheng
口試日期: 2023/11/28
學位類別: 碩士
Master
系所名稱: 大眾傳播研究所
Graduate Institute of Mass Communication
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 105
中文關鍵詞: 資訊隱私權通訊軟體推拉繫泊理論GPT語言模型遷移學習使用者行爲分析
英文關鍵詞: Information Privacy, WhatsApp, Push-Pull-Mooring Theory, GPT NLP, Transfer Learning, Behavior Analysis
研究方法: 個案研究法現象分析社會網路分析內容分析法大數據研究
DOI URL: http://doi.org/10.6345/NTNU202301810
論文種類: 學術論文
相關次數: 點閱:308下載:46
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現在資訊社會中,科技已經成爲主體,知識變成客體,人們依賴行動裝置中企業的通訊軟體進行訊息交換主要管道。而當一家企業的通訊軟體主導市場,假如沒有受到有效的監管,企業與使用者間權力平衡很容易就會被打破,讓權力傾向於企業,用戶便失去自身資訊控制權,當中一些有價值的資訊可能存在被企業利用或外泄的風險,侵犯著用戶的資訊隱私權。因此,本研究藉由WhatsApp隱私條款修訂事件作爲研究議題,從過去甚少被研究的亞洲裏,當中的香港地區進行切入,使用大數據分析取徑,以推拉繫泊理論作爲研究框架使用分析社會對於企業侵犯著其資訊隱私的態度與行爲。
    本研究欲探討在全球兩大行動軟體商店Google Play和AppStore中WhatsApp、Signal、Telegram、Line、WeChat共五款軟體的香港地區用戶,對於WhatsApp隱私條款修訂事件,以半年為區間前後爲期18個月,共19,090筆評論内容,透過對應使用者行爲分析、GPT-3文本分析和詞頻分析進行研究。
    最終研究結果發現,(一)透過使用者行爲分析上述WhatsApp外四款可能的替代軟體中,WhatsApp用戶僅有與Signal有轉換行爲;(二)而透過GPT-3文本分析證實WhatsApp隱私條款事件是促成轉換的主要推拉因素;(三)詞頻分析的結果顯示,人際工作網路的關係是主要牽制WhatsApp用戶轉移的繫泊因素。由以上結果可以歸納出,作爲亞洲一部分的香港社會,普遍對於企業侵犯著其資訊隱私的態度是反感,但他們最終也沒有因爲這樣的態度而作出轉換行爲,而是受到亞洲國家普遍存在的集體主義特性牽制而繼續使用WhatsApp。

    In the current information society, technology has become the core, and knowledge has turned into an object. People rely on communication software from businesses on their mobile devices as the primary channel for exChanging messages. However, when a company's communication software dominates the market without effective regulation, the balance of power between the company and users can easily be disrupted, leading to a power shift in favor of the company. This poses a risk of companies exploiting valuable user information, infringing upon their information privacy rights. Therefore, this study, using the WhatsApp privacy policy revision as its research topic, delves into a relatively underexplored area, particularly the Hong Kong region within Asia, employing the Push-Pull Mooring Theory as a research framework to analyze the society's attitudes and behaviors regarding corporate infringements on information privacy by big data analysis.
    This research aims to investigate users in the Hong Kong region of five mobile applications: WhatsApp, Signal, Telegram, Line, and WeChat, available on the two major global mobile software stores, Google Play and App Store. The study focuses on their responses to the WhatsApp privacy policy revision over a period of 18 months, divided into six-month intervals, analyzing a total of 19,090 comments through behavior sequence analysis, GPT-3 NLP, and word frequency analysis.
    The results show that, (1) through behavior sequence analysis, WhatsApp users exhibited a conversion behavior primarily with Signal among the four possible alternative applications outside of WhatsApp; (2) GPT-3 text analysis confirmed that the WhatsApp privacy policy revision was the primary push-pull factor behind these conversions; (3) The results of word frequency analysis indicate that peer relationships were the main restraining factors for WhatsApp users' transitions. Based on these findings, it can be inferred that the general attitude in Hong Kong, as a part of the Asian region, leans toward disapproval of corporate infringements on their information privacy. However, users did not transition primarily due to this dissatisfaction but rather due to other constraining factors, which led them to continue using WhatsApp.

    第壹章 緒論 1 1.1研究背景 1 1.2研究動機與目的 6 1.3研究問題與架構 10 第貳章 文獻探討 12 2.1通訊軟體 12 2.1.1通訊的發展 12 2.1.2通訊軟體的轉變 15 2.1.3資訊的力量 21 2.2資訊權力不對稱,資訊隱私權與商品化 21 2.2.1資訊權力不對稱 21 2.2.2資訊隱私權 23 2.2.3商品化 24 2.2.4政治工具 25 2.3社交移民 26 2.4推拉理論 27 2.4.1理論定義 28 2.4.2理論應用 28 2.5機器學習 29 第參章 研究方法 34 3.1數據來源 34 3.2研究架構與方法 42 3.3實驗方法 47 3.3.1使用者行爲分析 47 3.3.2 GPT-3文本AI模型 48 3.3.3詞頻分析 59 第肆章 研究結果 62 4.1使用者行爲分析結果 62 4.2語言模型分類後評分結果 67 4.3詞頻分析結果 71 第伍章 結論與限制 74 5.1研究發現與討論 74 5.2研究貢獻 76 5.3研究限制 77 5.4研究建議 78 參考文獻 80 附錄一 整理Hofstede (2010) 76 個國家和地區IDV指數排名 92 附錄二 Z-Score與P值對照表 97 附錄三 WhatsApp評價詞頻統計 98

    MikaBrea(2020年3月1日)。Telegram 真的比 LINE 好?如何中文化?3 大殺手級優勢助 你逃脫 LINE 的同溫層。T 客邦新聞文章。https://www.techbang.com/posts/75695-what-is-telegram
    王天嬌、沈菲(2016)。網路隱私保護意識、行為與後果:基於文化差異的全球比較。互聯網與國家治理年度報告2016,165-182。
    王鼎宏(2016)。使用機器學習方法預測加權指數之研究。國立成功大學AMBA碩士論文。
    王麗萍、劉鵬(2009)。前進與挑戰:資訊社會媒介政策與保護。山東大學學術論文:哲學社會科學版,3,104-110。
    吳承安(2020)。新創即時通訊軟體該何去何從–以台灣新創公司為例。國立政治大學企業管理研究所碩士論文。
    呂愛麗(2014年03月13日)。「我還是把谷歌戒掉了!」保護隱私大作戰年花兩千美元。財訊雙週刊,446,54。
    林定立(2002)。消費文化中“資訊崇拜”的意義。資訊社會研究,3,63-84。https://doi.org/10.29843/JCCIS.200207.0003
    林軍(2010)。馬化騰的騰訊帝國(張宇宙譯)。商周出版。(原著出版於2009年)
    林啟耀(2021)。社群大數據的分析與應用。指南新政,16,5-9。https://css.nccu.edu.tw/wp-content/uploads/2021/02/2_林啟耀_社群大數據的分析與應用.pdf
    侯正裕、陳靜枝(2011)。「網際遷移」─以人口遷移理論探索社交網站的轉換─舉Plurk為例。資訊管理學報,19(1),105-132。https://doi.org/10.6382/JIM.201201.0105
    孫筱晴(2019)。社交平台之生態圈建構與商業模式分析--以LINE為例。國立臺灣大學商學研究所碩士論文。
    莊文彬(2016)。「國際即時通訊軟體使用行為意向研究—以LINE、FBMessenger為例」。文藻外語大學國際事業暨文化交流研究所碩士論文。
    郭懿慧(2005)。大學生即時通訊的使用對於團隊合作之研究。元智大學資訊傳播系碩士班碩士論文。
    陳予得(2021)。應用遷移學習與文字探勘分析致股東報告書。國立臺灣大學會計學研究所碩士論文。
    陳婉琪、張恆豪、黃樹仁(2016)。網絡社會運動時代的來臨?太陽花運動參與者的人際連帶與社群媒體因素初探。人文及社會科學集刊,28(4),467-501。
    陳慶鴻(2019)。基於度量學習的半監督式迴歸。國立交通大學工業工程與管理系所碩士論文。
    黃則馨(2013)。數位足跡之發展及運用與對隱私權的威脅。臺灣大學國家發展研究所碩士論文。
    廖唯翔(2022)。運用遷移學習偵測軍民商務網站之虛假評論。國防大學資訊管理學系碩士論文。
    劉建志(2005)。細說即時傳訊。網路通訊雜誌,66-71。
    蔡燕平(2004)。組織採用即時通訊軟體與組織溝通之研究─以MSN Messenger為例。銘傳大學資訊管理學系碩士在職專班碩士論文。
    鄭少凡(2013年2月5日)。Kakao Talk、LINE、WeChat掀起戰火!看雜誌。https://www.watchinese.com/article/2013/4933
    魏碧梅(2004)。台灣網際網路使用者對即時通訊之認知與實際使用狀況。國立政治大學資訊管理研究所碩士論文。
    蘇友珊(2014)。影響行動通訊APP使用者效益因素之研究。國立臺灣師範大學科技學院工業教育學系碩士論文。
    大澤祥輝(2013)。スマートフォンを用いたコミュニケーションの特徴‐LINE ト ークにおける会話の傾向‐。八戸工業大学感性デザイン学部感性デザイン学科 論文。
    服部圭子、岡本能里子(2019)。LINE によるコミュニケーション-文字を伴った スタンプに注目して-。社会言語科学会,2019 年 3 月。
    松延隆行、命尾泰造、菅原清保、木村沙織(2012)。メッシュ化するケータイコ ミュニケーション~心地よい絡みへのシフト~。第 3 回ケータイ社会研究レポー トコンテスト,モバイル社会研究所。
    栗岡久幸、黒済晃(2007)。ヤマハの歴史と経営システムの変遷からみた企業文化と記録管理。レコード・マネジメント,54,41-48。
    AmbLee, N. & Bui, T. (2011). Harnessing the influence of social proof in online shopping: The effect of electronic word of mouth on sales of digital microproducts. International Journal of Electronic Commerce, 16(2), 91-113. https://doi.org/10.2753/JEC1086-4415160205
    Amnesty. (Novmber 30, 2020). Viet Nam: Let us breathe! Censorship and criminalization of online expression in Viet Nam. https://www.Amnesty.org/en/wp-content/uploads/2021/05/ASA4132432020ENGLISH.pdf
    Apptopia. (January 4, 2023). Leading mobile apps worldwide in 2022, by downloads (in millions). https://www.statista.com/statistics/1285960/top-downloaded-mobile-apps-worldwide/
    Bansal, H. S., Taylor, S. F., & James, Y. S. (2005). "Migrating" to New Service Providers: Toward a Unifying Framework of Consumers' Switching Behaviors. Journal of the Academy of Marketing Science, 33(1), 96-115.
    Beuving, J. (2020). Ethnography’s future in the big data era. Information, Communication & Society, 23(11), 1625 - 1639. https://doi.org/10.1080/1369118X.2019.1602664.
    Bhattacherjee, A., & Park, S. C. (2014). Why End-Users Move to the Cloud: A Migration-Theoretic Analysis. European Journal of Information Systems, 23(3), 357–372.
    Bjerre-Nielsen, A., & Glavind, K. L. (2022). Ethnographic data in the age of big data: How to compare and combine. Big Data & Society, 9(1).
    https://doi.org/10.1177/20539517211069893
    Brin, D. (1999). The transparent society: Will technology force us to choose between privacy and freedom? Harvard Journal of Law & Technology, 12(2), 378-398. https://www.researchgate.net/publication/238123438_The_transparent_society_Will_technology_force_us_to_choose_between_privacy_and_freedom
    Burnham, T. A., Frels, J. K., & Mahajan, V. (2003). Consumer Switching Costs: A Typology, Antecedents, and Consequences. Journal of the Academy of Marketing Science, 31(2), 109–126.
    Burns, R. W. (2003). Communications: An International History of the Formative Years. Institution of Engineering and Technology.
    Casciaro, T. & Piskorski, M. (2005). Power Imbalance, Mutual Dependence and Constraint Absorption: A Closer Look at Resource Dependence Theory. Adninistrative Science Quarterly, 50(1), 167-199.
    Chang, I.-C., Liu, C.-C. and Chen, K. (2014). The push, pull and mooring effects in virtual migration for social networking sites. Infomation Systems Journal, 24(4), 323-346. https://doi.org/10.1111/isj.12030
    Charles, V., & Gherman, T. (2019). Big Data analytics and ethnography: together for the greater good. In Big Data for the Greater Good, 42, 19-33.
    https://doi.org/10.1007/978-3-319-93061-9_2
    Cheng, Z., Yang, Y., & Lim, J. (2009). Cyber Migration: An Empirical Investigation on Factors that Affect Users' Switch Intentions in Social Networking Sites. 2009 42nd Hawaii International Conference on System Sciences. Big Island, HI, USA: IEEE. https://doi:10.1109/HICSS.2009.140
    Chih, W. H., Wang, K. Y., Hsu, L. C. & Huang, S. U. (2013). Investigating Electronic Word-of-Mouth Effects on Online Discussion Forums: The Role of Perceived Positive Electronic Word-of-Mouth Review Credibility. Cyberpsychology, Behavior, and Social Networking,16(9), 658-668. http://doi.org/10.1089/cyber.2012.0364
    Chu, J. & Xie, W. (2019). Commercialization of Personal Information: Pricing and Trading. Advances in Economics, Business and Management Research, 91, 343-346. https://doi.org/10.2991/edmi-19.2019.57
    Church, K., & De Oliveira, R. (2013, August). What's up with WhatsApp? Comparing mobile instant messaging behaviors with traditional SMS. In Proceedings of the 15th international conference on Human-computer interaction with mobile devices and services, 352-361. https://doi.org/10.1145/2493190.2493225
    Churchill, C. J. (2005). Ethnography as Translation. Qualitative Sociolgy, 28(1), 3–24. https://doi.org/10.1007/s11133-005-2628-9
    Clemons, E. K., Gao, G., & Hitt, L. M. (2006). When Online Reviews Meet Hyperdifferentiation: A Study of Craft Beer Industry. Journal of Management Information Systems, 23(2), 149-171. https://doi.org/10.2753/MIS0742-1222230207
    Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20, 37-46. http://dx.doi.org/10.1177/001316446002000104
    Curry, D. (February 23, 2023). App Data Report 2023 Comprehensive insights into iOS and Google Play app stores. https://doi.org/10.2307/2578749
    Dabbagh, N., & Reo, R. (2011). Back to the Future: Tracing the Roots and Learning Affordances of Social Software. Web 2.0-Based E-Learning: Applying Social Informatics for Tertiary Teaching, 1-20. https://doi.org/10.4018/978-1-60566-294-7.CH001.
    Durovic, M. & Montanaro, M. (2021). Data Protection and Data Commerce: Friends or Foes? European Review of Contract Law, 17(1), 1-36.
    Emerson, R. M. (1962). Power-Dependence Relations. American Sociological Review, 27, 31-41. https://doi.org/10.2307/2089716
    Fleiss, J. L. (1981). Statistical methods for rates and proportions (2nd ed.). New York: John Wiley.
    Floridi, L. & Chiriatti, M. (2020). GPT-3: Its Nature, Scope, Limits, and Consequences. Minds & Machines, 30, 681–694. https://doi.org/10.1007/s11023-020-09548-1
    Franke, R. H., Hofstede, G. & Bond, M. H. (1991). Cultural roots of economic performance: A research note. Strategic Management Journal, Wiley Blackwell, 12(1), 165-173.
    Gormley, K. (1992). One Hundred Years of Privacy, Wisconsin Law Review, 1335-1408.
    Griggio, C. F., Nouwens, M. & Klokmose, C. N. (2022). Caught in the Network: The Impact of WhatsApp’s 2021 Privacy Policy Update on Users’ Messaging App Ecosystems. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (CHI '22). Association for Computing Machinery, New York, NY, USA, Article 104, 1-23. https://doi.org/10.1145/3491102.3502032
    Hamouda, M., & Tabbane, R. (2013). Impact of Electronic Word of Mouth Evaluation on Purchase Intention: The Mediating Role of Attitude toward the Product. International Journal of Online Marketing, 3(2), 20-37.
    https://doi.org/10.4018/ijom.2013040102.
    Harman, M., Jia, Y. & Zhang, Y.(2012). App store mining and analysis: MSR for app stores. 2012 9th IEEE Working Conference on Mining Software Repositories (MSR), 108-111.
    Hellard, B. (2022). 46 US states call for Meta monopoly lawsuit to be reinstated. ITPro, 2022/09/20. https://www.itpro.co.uk/business-strategy/mergers-and-acquisitions/369097/46-us-states-call-for-meta-monopoly-lawsuit-to-be-reinstated
    Hofstede, G. (1980). Culture' consequences: International differences in work-related values. Beverly Hills, CA: Sage.
    Hofstede, G., Hofstede, G. J. & Minkov, M. (2010). Cultures and Organizations: Software of the Mind (3rd ed.) New York: McGraw-Hill.
    Hsieh, J. K., Hsieh, Y. C., Chiu, H. C. & Feng, Y. C. (2012). Post-Adoption Switching Behavior for Online Service Substitutes: A Perspective of the Push–Pull–Mooring Framework. Computers in Human Behavior, 28(5), 1912-1920. https://doi.org/10.1016/j.chb.2012.05.010
    Huang, M., Chen, K., Xiang, S., Zhu, X., Xu, H., & Wang, G. (2021). Mining and analysis of hot topics in Social Media. 2021 International Symposium on Artificial Intelligence and its Application on Media (ISAIAM), 155- 159. https://doi.org/10.1109/ISAIAM53259.2021.00040.
    Hussain, M., Bird, J. J. & Faria, D. R. (2019). A Study on CNN Transfer Learning for Image Classification. Advances in Intelligent Systems and Computing, 840, 191-202. https://doi.org/10.1007/978-3-319-97982-3_16
    Katz, M. L., & Shapiro, C. (1985). Network Externalities, Competition, and Compatibility. The American Economic Review, 75(3), 424-440.
    Kemp, S. (January 26, 2023). Digital 2023: Global Overviw Report. DATAREPORTAL. https://datareportal.com/reports/digital-2023-global-overview-report
    Khan, L. M. (2017). Amazon’s Antitrust Paradox. The Yale Law Journal, 126(3), 710-905.
    Kim, G., Shin, B., & Lee, H. G. (2006). A Study of Factors that Affect User Intentions toward Email Service Switching. Information & Management, 43(7), 884–893.
    Knockel, J., Parsons, C., Ruan, L., Xiong, R., Crandall, J. & Deibert, R. (2020, May). We Chat, They Watch: How International Users Unwittingly Build up WeChat’s Chinese Censorship Apparatus. Citizen Lab Research Report No. 127, University of Toronto.
    Lai, S. W., Xu, L. H, Kang, L. & Zhao, J. (2019). Recurrent Convolutional Neural Networks for Text Classification. Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI'15), 2267-2273.
    Lanier, Jr., C. D., & Saini, A. (2008). Understanding Consumer Privacy: A Review & Future Directions. Academy of Marketing Science Review, 12(2), 1-31.
    Lawler, E. J. & Bacharach, S. B. (1987). Comparison of Dependence and Punitive Forms of Power. Social Forces, 66(2), 446-462.
    Lee, E. S. (1966). A Theory of Migration. Demography, 3(1), 47-57.
    Lee, H. Y. [Hung-yi Lee]. (2016, December 9). ML Lecture 19: Transfer Learning [Video]. YouTube. https://youtu.be/qD6iD4TFsdQ?t=4295
    Liu, Y. & Sun, Y. (2013). Can reputation manipulation boost app sales in Android market? 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 8707-8711.
    Luganskaya, D. (Augest 6, 2016). WhatsApp co-founder Jan Koum:"Most of startup ideas are absolutely stupid". https://medium.com/hackernoon/whatsapp-co-founder-jan-koum-most-of-startup-ideas-are-absolutely-stupid-501ae81d28aa
    Lyon, D. (2002). Every Surveillance: Personal Data and Social Classifications. Information, Communication & Soicety, 5(2), 242-257.
    Lyu, Z., Song, H. H., Basanta-Val, P., Steed, A., & Jo, M. (2017). Next-Generation Big Data Analytics: State of the Art, Challenges, and Future Research Topics. IEEE Transactions on Industrial Informatics, 13(4), 1891-1899.
    https://doi.org/10.1109/TII.2017.2650204
    Mason, R. O. (1986). Four Ethical Issues Of The Information Age. MIS Quarterly, 10(1), 5-12. https://doi.org/10.2307/248873
    Molm, L. D. (1987). Power-dependence theory: Power processes and negative outcomes. In E. J. Lawler & B. Markovsky (Eds.), Advances in group processes, Greenwich, CT: JAI Press.
    Molm, L. D. (1990). Structure, Action and Outcomes: The Dynamic Power of Social ExChange. American Sociological Review, 55(3), 427-447.
    Moore, J. F. (1996). The Death of Competition: Leadership and Strategy in the Age of Business Ecosystems. New York, NY: Wiley Harper Business.
    Mosco, V. (2014). To the Cloud: Big Data in a Turbulent World (1st ed.). Routledge. https://doi.org/10.4324/9781315631554
    Mukherjee, A., Venkataraman, V., Liu, B., & Glance, N. (2021). What Yelp Fake Review Filter Might Be Doing? Proceedings of the Seventh International AAAI Conference on Web and Social Media, 7(1), 409-418. https://doi.org/10.1515/ercl-2021-0001
    Onishi, H., and Manchanda, P. 2012. Marketing activity, blogging and sales. International Journal of Research in Marketing Science, 29(3), 221-234. https://doi.org/10.1016/j.ijresmar.2011.11.003
    Ott, M., Choi, Y., Cardie, C., & Hancock, J. T. (2011). Finding Deceptive Opinion Spam by Any Stretch of the Imagination. ArXiv, abs/1107.4557.
    Pallathadka, H., Poddar, A., Soto, R., Cavaliere, L., More, A., & Regin, R. (2021). Production Planning and Scheduling of Mediating Effect of Electronic Applications. 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), 1, 1994-1998. https://doi.org/10.1109/ICACCS51430.2021.9441711.
    Pan, S. J. & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359. https://doi.org/10.1109/TKDE.2009.191
    Prosser, W. L. (1960). Privacy. California Law Review, 48, 383-423. https://doi.org/10.2307/3478805
    Rajpurohit, D., & Yadav, D. (2021). A Socio-Legal Analysis of WhatsApp Privacy Policy 2021 in India: A Contemporary Study. https://doi.org/10.2139/ssrn.3850579.
    Ravenstein, E. G. (1885). The Laws of Migration. Journal of the Statistical Society of London, 48(2), 167-235.
    Rogers, E. M. (1986). Communication Technology the New Media in Society. The Free Press.
    Ruder, S., Ghaffari, P. & Breslin, J. G. (2016). INSIGHT-1 at SemEval-2016 Task 5: Deep Learning for Multilingual Aspect-based Sentiment Analysis. Proceedings of SemEval-2016, 330-336.
    Schreiner, M. & Hess, T. (2015). Examining the role of privacy in virtual migration: the case of WhatsApp and Threema. 21st Americas Conference on Information Systems, 33.
    Shahin, S. (2016). A Critical Axiology for Big Data Studies. Palabra Clave, 19(4), 972-996. https://doi.org/10.5294/PACLA.2016.19.4.2
    The European Commission (2017). Antitrust: Commission fines Google €2.42 billion for abusing dominance as search engine by giving illegal advantage to own comparison shopping service – Factsheet. https://ec.europa.eu/commission/presscorner/api/files/document/print/es/memo_17_1785/MEMO_17_1785_EN.pdf
    Warren, S., & Brandeis, L. (1890). The Right to Privacy. Harvard Law Review, 4, 193-220. https://doi.org/10.2307/1321160
    Westin, A. F. (1967). Privacy and freedom. Atheneum. https://doi.org/10.1177/000271626837700157
    Xu, Y. C., Yang, Y., Cheng, Z., & Lim, J. (2014). Retaining and Attracting Users in Social Networking Services: An Empirical Investigation of Cyber Migration. Journal of Strategic Information Systems, 23(3), 239-253.

    下載圖示
    QR CODE