簡易檢索 / 詳目顯示

研究生: 謝雲岳
Hsieh, Yun-Yueh
論文名稱: 28GHz砷化鎵增強型pHEMT功率放大器與PIN二極體切換器設計
Design of a 28 GHz GaAs E-mode pHEMT Power Amplifier and a 28 GHz PIN diode Switch
指導教授: 蔡政翰
Tsai, Jeng-Han
口試委員: 邱培晉 林嘉孚 蔡政翰
口試日期: 2021/07/02
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 75
中文關鍵詞: 功率放大器線性器切換器28 GHzKa頻帶
英文關鍵詞: Power Amplifier, Linearizer, switch, 28 GHz, Ka band
研究方法: 實驗設計法調查研究主題分析
DOI URL: http://doi.org/10.6345/NTNU202101755
論文種類: 學術論文
相關次數: 點閱:106下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一顆電路為內具線性器之28 GHz二級功率放大器,透過傳輸線匹配網路達成輸出功率阻抗匹配、輸入共軛匹配之效果。當VG = 0.5 V時,且線性器為關閉狀態(Vctrl = 0 V)時,在頻率為28 GHz下,其功率增益(Power gain)約為21.16 dB,飽和輸出功率Psat約為24.63 dBm,1-dB增益壓縮點之輸出功率(OP1dB)約為24.01 dBm,最大功率附加效率Peak PAE約為36.41 %,而當線性器為開啟狀態((Vctrl1 = 0.35 V、Vctrl2 = 0.15 V)且頻率為28 GHz時,IMD3在-40 dBc時的輸出功率為16 dBm,整體晶片佈局面積為1 mm × 2 mm。
    第二顆電路為28 GHz PIN二極體切換器,採用四分之一波長線的SPDT架構。當操作頻率為28 GHz且VON為-4 V、VOFF為1.3 V時, 插入損耗約為2.15 dB,輸入輸出反射損耗(S11、S22)分別為14.07 dB與9.92 dB,0.1-dB增益壓縮點之輸入功率(IP0.1dB)約為17 dBm,整體晶片佈局面積為1 mm × 1 mm。

    First, 28 GHz two-stage power amplifier with a built-in linearizer achieves output power matching and input conjugate matching through a transmission line matching network. When VG = 0.5 V and the linearizer is off (Vctrl = 0 V), the power gain at 28 GHz is 21.16 dB, the saturated output power (Psat) is 24.63 dBm, the output power at 1-dB gain compression point (OP1-dB) is 24.01 dBm, and the maximum power added efficiency (PAE) is 36.41 %. Moreover, when the linearizer is on (Vctrl1 = 0.35 V, Vctrl2 = 0.15 V) and the frequency is 28 GHz, the output power of IMD3 is 16 dBm at -40 dBc and the chip size is 1 mm × 2 mm.
    Second, a 28 GHz PIN diode switch adopts SPDT architecture with quarter wavelength lines. When operating at 28 GHz with VON at -4 V and VOFF at 1.3 V, the insertion loss is 2.15 dB, the input and output reflection losses (S11 and S22) are 14.07 dB and 9.92 dB respectively, and the input power at the 0.1-dB gain compression point (IP0.1dB) is 17 dBm, and the chip size is 1 mm × 1 mm.

    摘 要 i ABSTRACT iii 目 錄 v 圖 目 錄 viii 表 目 錄 xi 第一章 緒論 1 1.1 研究背景與動機 1 1.2 功率放大器文獻探討 3 1.3 切換器文獻探討 5 1.4 研究成果 6 1.5 論文架構 7 第二章 功率放大器基本介紹 8 2.1 概述 8 2.2 功率放大器之重要設計參數9 2.2.1 功率(Power) 9 2.2.2 線性度(Linearity) 10 2.2.3 效率(Efficiency) 14 第三章 28 GHz E-pHEMT驅動級與功率級功率放大器設計 15 3.1 簡介 15 3.2 單級功率放大器設計 17 3.2.1 偏壓分析與選擇 17 3.2.2 pHMET元件尺寸分析與選擇 19 3.3 驅動級功率放大器設計 21 3.3.1 匹配網路設計 21 3.3.2 功率放大器模擬結果 24 3.3.3 功率放大器量測結果 27 3.4 功率級功率放大器設計 30 3.4.1 匹配網路設計 30 3.4.2 功率放大器模擬結果 33 3.4.3 功率放大器量測結果 36 3.5 總結 38 第四章 28 GHz E-pHEMT雙級功率放大器設計 39 4.1 簡介 39 4.2 內具線性器之28 GHz雙級功率放大器設計 40 4.2.1 線性器原理簡介 40 4.2.2 具內建線性器功率放大器之增益分析 42 4.2.3 線性器架構選擇 43 4.3 內具共源極組態線性器之裝級功率放大器 46 4.3.1 功率放大器模擬結果 46 4.3.2 功率放大器之量測結果 49 4.4 總結 52 第五章 28 GHz PIN二極體切換器設計 53 5.1 簡介 53 5.2 PIN二極體切換器架構選擇 54 5.3 28 GHz PIN二極體切換器設計 59 5.3.1 設計原理 59 5.3.2 二極體偏壓與尺寸選擇 60 5.4 切換器之模擬結果63 5.5 切換器之量測結果66 5.6 總結69 第六章 結論71 參考文獻72 自傳 74 學術成就 75

    [1] T. Cameron, "Bits to Beams–RF Technology Evolution for 5G mmwave Radios," Analog Devices, Norwood, MA, USA, Tech. Rep, 2019.
    [2] W.-C. Huang, J.-L. Lin, Y.-H. Lin, and H. Wang, "A K-band power amplifier with 26-dBm output power and 34% PAE with novel inductance-based neutralization in 90-nm CMOS," in 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2018: IEEE, pp. 228-231.
    [3] Y. Chang, B.-Z. Lu, Y. Wang, and H. Wang, "A Ka-band stacked power amplifier with 24.8-dBm output power and 24.3% PAE in 65-nm CMOS technology," in 2019 IEEE MTT-S International Microwave Symposium (IMS), 2019: IEEE, pp. 316-319.
    [4] S. N. Ali, P. Agarwal, S. Mirabbasi, and D. Heo, "A 42–46.4% PAE continuous class-F power amplifier with C gd neutralization at 26–34 GHz in 65 nm CMOS for 5G applications," in 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2017: IEEE, pp. 212-215.
    [5] K. Wang, Y. Yan, and X. Liang, "A K-band power amplifier in a 0.15-um GaAs pHEMT process," in 2018 IEEE MTT-S International Wireless Symposium (IWS), 2018: IEEE, pp. 1-3.
    [6] H. Alsuraisry, S.-T. Yen, J.-H. Tsai, and T.-W. Huang, "Ka-band up-link CMOS/GaAs power amplifier design for satellite-based wireless sensor," in 2017 Topical Workshop on Internet of Space (TWIOS), 2017: IEEE, pp. 1-3.
    [7] H. Li, X. Liang, and K. Wang, "A Ka Band 1.5 W 27.5% PAE MMIC Power Amplifier in 0.15 μm E-Mode GaAs pHEMT Process Co-analysis With Thermal Characteristic," in 2019 IEEE 3rd International Conference on Circuits, Systems and Devices (ICCSD), 2019: IEEE, pp. 69-73.
    [8] H. Alsuraisry, T.-Y. Chang, J.-H. Tsai, and T.-W. Huang, "A 38GHz 27dBm power amplifier in enhancement mode GaAs PHEMT technology," in 2017 10th Global Symposium on Millimeter-Waves, 2017: IEEE, pp. 85-86.
    [9] J. G. Yang and K. Yang, "High-linearity K-band absorptive-type MMIC switch using GaN PIN-diodes," IEEE microwave and wireless components letters, vol. 23, no. 1, pp. 37-39, 2013.
    [10] H.-E. Liu, X. Lin, H.-Y. Chang, and Y.-C. Wang, "10-MHz-to-70-GHz ultra-wideband low-insertion-loss SPST and SPDT switches using GaAs PIN diode MMIC process," in 2018 Asia-Pacific Microwave Conference (APMC), 2018: IEEE, pp. 1217-1219.
    [11] Y. Gong, J. W. Teng, and J. D. Cressler, "A compact, high-power, 60 GHz SPDT switch using shunt-series SiGe PIN diodes," in 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2019: IEEE, pp. 15-18.
    [12] Y.-T. Wang, L.-S. Wu, and J.-F. Mao, "Comparative Design of 28 GHz SPDT Switches with GaAs Passive pHEMTs and Diodes," in 2020 IEEE MTT-S International Wireless Symposium (IWS), 2020: IEEE, pp. 1-3.
    [13] P. Song, R. L. Schmid, A. Ç. Ulusoy, and J. D. Cressler, "A high-power, low-loss W-band SPDT switch using SiGe PIN diodes," in 2014 IEEE Radio Frequency Integrated Circuits Symposium, 2014: IEEE, pp. 195-198.
    [14] K.-Y. Lin, W.-H. Tu, P.-Y. Chen, H.-Y. Chang, H. Wang, and R.-B. Wu, "Millimeter-wave MMIC passive HEMT switches using traveling-wave concept," IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1798-1808, 2004.

    下載圖示
    QR CODE