簡易檢索 / 詳目顯示

研究生: 楊証皓
Cheng-Hao Yang
論文名稱: 高壓暨高溫環境下之單晶矽非等向性濕式蝕刻特性研究
Studies on anisotropic wet etching characteristics of single crystal silicon under high pressure and high temperature conditions
指導教授: 楊啟榮
Yang, Chii-Rong
程金保
Cheng, Chin-Pao
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 125
中文關鍵詞: 快速非等向性濕式蝕刻高壓矽蝕刻濕式蝕刻
英文關鍵詞: Fast anisotropic etching, high pressure
論文種類: 學術論文
相關次數: 點閱:309下載:87
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非等向性濕式矽蝕刻製程是體型矽微加工關鍵技術之一,而其技術發展重點在於如何提升蝕刻面的蝕刻速率與表面粗糙度。由於傳統的磁石攪拌方式有無法均勻地改善蝕刻速率與蝕刻粗糙度的缺點,而超音波震盪的方式雖可改善蝕刻表面粗糙度,但蝕刻速率改善的幅度卻不大,亦不適用於製作薄膜微結構。因此為改善以上機械攪拌式的缺點,本研究擬利用高壓高溫的方式,來進行快速非等向性濕式矽蝕刻,利用壓力輔助機制,可將蝕刻面的表面張力降低,並增加蝕刻液的氣體溶解度。最後,使氫氣泡附著現象得到有效解決,並增加蝕刻液的質傳效果,可降低蝕刻表面的粗糙度並大幅度地提升蝕刻速率。
    在應用方面,本研究將使用高壓高溫輔助蝕刻機制,結合快速的蝕刻速率、良好的表面粗糙度與非機械式攪拌方式等特性,用於製作各式薄膜微結構,達到大幅降低製程時間,並增加製作薄膜微結構之良率。
    本研究將以KOH與TMAH溶液為蝕刻液,整合薄膜沉積、微影(lithography)、電漿蝕刻等製程技術來進行研究計劃,並購裝具高壓控制、高溫控制、抗侵蝕及高強度等特色之高壓暨高溫濕式矽蝕刻系統,進而改善矽蝕刻特性。研究中所獲得的最佳參數,將應用於高精度矽微結構與薄膜微結構的製作,以達到批次量產的目的,實現低成本微機電系統的製造與應用技術。

    Anisotropic wet etching is one of the key technologys for the microstructure fabrication in Micro Electro Mechanical Systems(MEMS). In the study, for improving the roughness quality and etching rate of etched surface, high pressure and high temperature enhanced fast anisotropic etching of mono-crystalline silicon, the methods will be used to evaluate the etching properties of (100) silicon plane in KOH or TMAH solutions. The anisotropic etching parameters will be optimized adequately and employed to fabricate the high precise silicon microstructures.
    For the study of batch production, the silicon structures will be formed the metallic mold insert by the electroforming process, and then the molding process, including hot embossing or injection molding, will be applied to produce mass plastic microstructure, and then the low-cost MEMS applications will be realized. Four key techniques will be focused as followed: (1) To setup the apparatus of high pressure and high temperature suitable to anisotropic fast wet etching of single silicon; (2) To build up the optimized fast etching process parameters, (3) To fabricatie the silicon-microstructure and Silicon nitride membrane microstructure.
    The results of carrying out project will be predicted to promote the domestic silicon etching technique in MEMS , and also facilitate the international competitive power of the related companies in the market of micro-systems, which have been demonstrated as the highest valued industry in the future.

    總 目 錄 摘 要 Ⅰ 總目錄 Ⅱ 圖目錄 Ⅳ 表目錄 Ⅷ 第一章 緒論 1 1.1 前言 1 1.2 非等向性濕式蝕刻技術之重要性 4 1.3 非等向性濕式蝕刻技術之應用 5 1.4 論文架構 7 第二章 文獻回顧 16 2.1 濕式蝕刻概論 16 2.2 改良蝕刻特性之重要性 18 2.3 濕式蝕刻特性之改良方式 19 2.3.1 磁石攪拌與超音波震盪 19 2.3.2 微波輔助蝕刻 19 2.3.3 添加劑的運用 20 2.4 研究動機 21 第三章 應用理論與技術 31 3.1 單晶矽非等向性濕式蝕刻 31 3.1.1 矽的晶體結構 31 3.1.2 非等向性濕式蝕刻之基本概念 31 3.1.2.1 蝕刻終止技術 33 3.1.2.2 蝕刻保護技術 34 3.1.2.3 薄膜殘留應力問題 34 3.2 非等向性濕式蝕刻之影響因素 36 3.2.1非等向性濕式蝕刻的反應機制 36 3.2.2 蝕刻液的選用 37 3.2.3 非等向性濕式蝕刻之物理模型 39 3.3 快速非等向性濕式蝕刻之理論基礎 42 3.3.1 高壓物理之反應特性 42 3.3.2 高溫化學之蝕刻機制 43 3.3.3 蝕刻表面改質方法 44 第四章 研究設計與實驗方法 53 4.1 研究設計法則 53 4.1.1 實驗步驟設計 53 4.1.2 結構設計 54 4.2 實驗規劃與方法 55 4.3 實驗設備 57 第五章 實驗結果與討論 69 5.1 壓力輔助蝕刻 69 5.1.1 表面粗糙度 69 5.1.2 蝕刻速率 73 5.2 高溫高壓輔助蝕刻 75 5.2.1 表面粗糙度 75 5.2.2 蝕刻速率 78 5.3 蝕刻應用與性質 81 第六章 結論 114 參考文獻 116 圖 目 錄 Figure 1-1 Illustration of bulk micromachining on (100) silicon wafer 9 Figure 1-2 Different structure types producible on a (100) wafer 9 Figure 1-3 (a) Different structure types producible on (110) wafer; (b) SEM pictures of anisotropic wet etching structures on (110) wafer 10 Figure 1-4 Different excitation and detection principles for resonant vibration. Cantilever beams have been used to fabricate various sensing elements 11 Figure 1-5 (a) Three basic resonant structures; (b) two plate structures with mass-balanced vibration modes. The plate supports twist torsionally d 11 Figure 1-6 Photographs of several sensors fabricated using anisotropic wet etching: (a) force sensor; (b) flow sensor; (c) pressure sensor; (d) accelerometer; (e) vapor sensor; (f) double plate sensor 13 Figure 1-7 (a) Illustration of V-groove fabricated using anisotropic wet etching; (b) SEM picture of fiber switch based on bulk micromachining 14 Figure 1-8 Bulk micromachining platform integrated with V-groove, cavity and mesa on the substrate 14 Figure 1-9 (a) SEM photograph of portion 16-nozzle print head.fabricated using anisotropic wet etching; (b) SEM picture of a three-barrel neural microprobe 15 Figure 2-1 Illustrations of isotropic etching 23 Figure 2-2 Diagrams of hemispherical specimen of single-crystal silicon:(a) before etching; (b) after etching 23 Figure 2-3 Figure 2-3. Contour diagram of surface roughness at various oriented single crystal Silicon: (a) KOH; (b) TMAH 24 Figure 2-4 Contour diagram of etching rate at various oriented single crystal silicon: (a) KOH; (b) TMAH 24 Figure 2-5 Comparison between samples etched at various concentrations with and without IPA 25 Figure 2-6 Experimental setup for ultrasonic assisted anisotropic etching 25 Figure 2-7 SEM micrographs of ultrasonic assisted anisotropic etching structures: (a) broken cantilever beam; (b) sidewall damage 26 Figure 2-8 Microwave etching system: (1) microwave generator, (2) power supplying unit, (3) connector, (4) single or multimode resonator, (5) reaction chamber, (6) silicon substrate, (7) temperature sensor, (8) pressure sensor, (9) cooling water, (10) I/O 27 Figure 2-9 Microwave assisted etching process parameter: typical characteristics vs. time 27 Figure 2-10 Surface morphologies of silicon wafers etched in KOH and KOH+IPA solution 28 Figure 2-11 Surface morphologies of silicon wafers etched in TMAH and TMAH+IPA solution 29 Figure 2-12 Average roughness against etching temperature in pure and surfactant-added 10 wt. % TMAHW solutions 30 Figure 2-13 Average etching rate of (100) silicon plane against etching temperature in pure and surfactant-added 10 wt. % TMAH solutions 30 Figure 3-1 Illustration of diamond structure of silicon 47 Figure 3-2 Miller index of silicon crystal 47 Figure 3-3 Reactions of suspended bond and OH- at silicon atomic: (a) (111) crystal face; (b) (100) crystal face 48 Figure 3-4 Grooves fabricated using anisotropic etching on different directions of silicon crystal 48 Figure 3-5 SEM photography of micro cantilever beams 49 Figure 3-6 Various micro membrane structure fabricated using anisotropic etching technique 49 Figure 3-7 Illustration of etching stop technique 50 Figure 3-8 Diagram of heavy dope etching stop technique 50 Figure 3-9 Schematic diagram of electro chemical etching stop technique 51 Figure 3-10 Illustration of component protected by acrylic or teflon clamping 51 Figure 3-11 Illustrates of sidewall etching 52 Figure 3-12 Schematic diagram of wet etching reaction and formed H2 bubbles 52 Figure 4-1 Schematic diagram of anisotropic wet etching test patterns 61 Figure 4-2 Schematic mask patterns of micro membrane structure 61 Figure 4-3 Fabrication processes of the etching test pattern 62 Figure 4-4 Fabrication processes of micro membrane structures 62 Figure 4-5 Precise balance 63 Figure 4-6 Ultrasonic cleaner 63 Figure 4-7 Hot plate 64 Figure 4-8 Spin coater 64 Figure 4-9 UV mask aligner 65 Figure 4-10 Equipment with high pressure and temperature control for fast silicon anisotropic etching process 65 Figure 4-11 Reactive ion etching system 66 Figure 4-12 Optical microscope 66 Figure 4-13 Scanning electronic microscope 67 Figure 4-14 Surface profiler 67 Figure 4-15 Contact angle meter 68 Figure 5-1 SEM micrographs and average roughness of etched surfaces in 30 wt. % KOH solutions at 100 C 83 Figure 5-2 Surface roughness of etched surfaces in 30 wt. % KOH solution at 100 C 84 Figure 5-3 Average roughness against etching temperature in 30 wt. % KOH solution with pressure enhanced etching mechanism 85 Figure 5-4 Surface roughness of etched surfaces against etching temperature in pressure enhanced etching mechanism at 60, 80 and 100 C 86 Figure 5-5 AFM images of an Si(100) surface etched in 30 wt. % KOH solution at 100 C and 40 Kg/cm2 87 Figure 5-6 SEM micrographs and average roughness of etched surfaces in 10 wt. % TMAH solutions at 100 C 88 Figure 5-7 Surface roughness of etched surfaces in 10 wt. % TMAH solution at 100 C 89 Figure 5-8 Average roughness against etching temperature in 10 wt. % TMAH solution with pressure enhanced etching mechanism 90 Figure 5-9 Surface roughness of etched surfaces against etching pressure in 10 wt. % TMAH solution at 60, 80 and 100 C 91 Figure 5-10 AFM images of an Si(100) surface etched in 10 wt. % TMAH solution at 100 C and 40 Kg/cm2 92 Figure 5-11 Average etching rate of (100) silicon plane against etching temperature in 30 wt. % KOH solutions with pressure enhanced etching mechanism 93 Figure 5-12 Average etching rate of (100) silicon plane against etching pressure in 30 wt. % KOH solutions with pressure enhanced etching mechanism 94 Figure 5-13 Average etching rate of (100) silicon plane against etching temperature in 10 wt. % TMAH solutions with pressure enhanced etching mechanism 95 Figure 5-14 Average etching rate of (100) silicon plane against etching pressure in 10 wt. % TMAH solutions with pressure enhanced etching mechanism 96 Figure 5-15 SEM micrographs of microstructure fabricated by KOH solution 98 Figure 5-16 Dependence of the boiling point on etching pressure in high temperature and high pressure enhanced etching mechanism 99 Figure 5-17 SEM micrographs and average roughness of etched surfaces in 30 wt. % KOH solutions 100 Figure 5-18 Surface roughness of etched surfaces in 30 wt. % KOH solution 101 Figure 5-19 Average roughness against etching temperature in 30 wt. % KOH solution with high temperature and high pressure enhanced etching mechanism 102 Figure 5-20 SEM micrographs and average roughness of etched surfaces in 10 wt. % TMAH solutions 103 Figure 5-21 Surface roughness of etched surfaces in 10 wt. % TMAH solution 104 Figure 5-22 Average roughness against etching temperature in 10 wt. % TMAH solution with high temperature and high pressure enhanced etching mechanism 105 Figure 5-23 Average etching rate of (100) silicon plane against etching temperature in 30 wt. % KOH solutions with high temperature and high pressure enhanced etching mechanism 106 Figure 5-24 Etching ratio against etching temperature in 30 wt. % KOH solutions with high temperature and high pressure enhanced etching mechanism 107 Figure 5-25 Average etching rate of (100) silicon plane against etching temperature in 10 wt. % TMAH solutions with high temperature and high pressure enhanced etching mechanism 108 Figure 5-26 Etching ratio against etching temperature in 10 wt. % TMAH solutions with high temperature and high pressure enhanced etching mechanism 109 Figure 5-27 SEM micrographs of microstructure fabricated by KOH solution in high temperature and high pressure enhanced etching mechanism at 140 °C 110 Figure 5-28 Silicon nitride membrane microstructure fabricated by KOH solution in high temperature and high pressure enhanced etching mechanism. 112 Figure 5-29 SEM of a thickness of membrane microstructures fabricated by KOH solution in high temperature and high pressure enhanced etching mechanism. 113 表 目 錄 Table 1-1 Microfabrication technologies in MEMS field 8 Table 4-2 Experimental facilities 59 Table 4-2 Information of experimental materials 60 Table 4-3 Various surfactants added to KOH and TMAH solution 60

    參考文獻
    1. 楊啟榮, "微機電系統原理與應用", 國立台灣師範大學上課講義 (2003).
    2. 楊啟榮等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章, pp. 142 (2003).
    3. O. Powell and H. B. Harrison, "Anisotropic etching of {100} and {110} planes in (100) silicon", Journal of Micromech. and Microeng. , Vol. 11, pp. 217-220 (2001).
    4. W. S. Choi and J. G. Smits, "A Method to etch undoped silicon cantilever beams", Journal of Microelectromechanical System, Vol. 2, No. 2, pp. 82-86 (1993).
    5. K. E. Bean, "Anisotropic etching of silicon", IEEE Transactions on Electron Devices, Vol. ED-25, No. 10, October (1978).
    6. K. Ohwada, Y. Negoro, Y. Konaka and T. Oguchi, "Groove depth uniformization in (110) si anisotropic etching by ultrasonic wave and application to accelerometer fabrication", IEEE Proceedings, pp. 100 (1995).
    7. R. Muller, I. Pavelescu, V. Moagar-poladian, E. Manea, O. T. Nedelcu and V. Avramescu, "3D microstructured cantilevers for optical detection applications", CAS’97 Proceedings, Vol. 2 (1997).
    8. M. M. Noor, B. Bais and B. Y. Mailis, "The effects of temperature and KOH concentration on silicon etching rate and membrane surface roughness", Semiconductor Electronics, Proceedings. ICSE 2002. IEEE International Conference, 19-21 Dec. (2002)
    9. S. Carola, R. Lars, G. A. Hakan and B. Ylva, "Fabrication of 45 angle mirrors together with well-define V-grooves using wet anisotropic etching of silicon ", Journal of Microelectromechanical system, Vol. 4, pp. 213-219 (1995).
    10. S. M. Sze, "Semiconductor sensor", John Wiley & Sons., New York (1994).
    11. C. S. Chang, M.W. Putty, D.B. Hicks, C. H. Li and R. T. Howe, "Resonant-bridge two-axis micro-accelerometer", Sensors and Actuator A, Vol. 21-23, pp. 342-345 (1990).
    12. T. S. J. Lammerink and S. J. Gerritsen, "Fiber-optic sensors based on resonating mechanical structures", Int. Soc. Opt. Eng. SPIE Fiber Optic Sensor II, 789 pp. 67-71 (1987).
    13. G. Stemme, "Resonant silicon sensors", Journal of Micromech. Microeng. , Vol. 1, pp. 113-125 (1991).
    14. M. Elwenspoek, F. R. Blom, S. Bouwstra, T. S. J. Lammerink, F. C. M. van de Pol, H. A. C. Tilmans, Th. J. A. Popma and J. H. J. Fluitman, "Transduction mechanisms and their applications in micromechanical devices", Proc. IEEE MEMS Workshop, pp. 126-132 (1989).
    15. B. Hok and K. Gustafsson, "Vibration analysis of micromechanical elements", Sensors and Actuators A, Vol. 8, pp. 235-243 (1985).
    16. E. Stemme and G. Stemme, "A balanced resonant pressure sensor", Sensors and Actuators A, Vol. 21, pp. 336-341 (1989).
    17. F. R. Blom, S. Bouwstra, J. H. J. Fluitman and M. Elwenspoek, "Resonating silicon beam force sensor", Sensors and Actuators A, Vol. 17, pp.513-519 (1989).
    18. S. Bouwstra, R. Legtenberg and H. A. C.Tilmans, "Resonating micro-bridge mass flow sensor", Sensors and Actuators A, Vol. 21-23, pp. 332-335 (1990).
    19. K. E. B. Thornton, D. Uttamchandani and B. Culshaw, "A sensitive optically excited resonator pressure sensor", Sensors and Actuators A, Vol. 24, pp. 15-19 (1990).
    20. D. W. Satcheel and J. C. Greenwood, "A thermally excited silicon accelerometer", Sensors and Actuators A, Vol. 17, pp. 241-245 (1989).
    21. R. T. Howe and R. S. Muller, "Resonant micro-bridge vapor sensor", IEEE Trans. Electro Devices, Vol. ED-33, pp. 499-506 (1986).
    22. J. C. Greenwood, "Etched silicon vibrating sensor", Journal of Physical E: Sci. Instrum. , Vol. 17, pp. 650-652 (1984).
    23. S. Carola and B. Ylva, "Bulk silicon holding structures for mounting of optical fibers in V-grooves", Journal of Microelectromechanial system, Vol. 6, No. 1, pp. 35-40 (1997).
    24. H.-Y. Chu and W. Fang, "Bulk Micromachining Fabrication Platform Using theIntegration of DRIE and Wet Anisotropic Etching", Microsystem Technologies, Vol. 9, pp. 1-10 (2004).
    25. M. Mita, D. Mivauchi, H. Toshiyoshi, H. Fujita, "An out of plane polysilicon actuator with a smooth vertical mirror for optical fiber switch application", IEEE/LEOS Summer Topical Meetings, II/33 - II/34, 20-24 July (1998).
    26. R. Wiesmann, S. Kalvaram, A. Neyer, "Monomode polymer waveguides with integrated mirrors", 22nd European conference on Optical Communication-ECOC’96, pp. 265-268 (1996).
    27. Z. Yang, H. Goto, M. Matsumoto, R. Maeda, "Ultrasonic micromixer for microfluidic systems", MEMS 2000. The Thirteenth Annual International Conference, pp. 80-85, 23-27 Jan. (2000).
    28. X. N. Jiang, Z. Y. Zhou, X. Y. Huang, C. Y. Liu, "Laminar flow through microchannels used for microscale cooling systems", Electronic Packaging Technology Conference, pp. 119-122, 8-10 Oct. (1997).
    29. J. Chen, K. D. Wise, J. F. Hetke and S. C. Bledsoe, "A Multichannel Neural probe for selective Chemical Delivery at the Cellular Level", IEEE Transactions on Biomedical Engineering, Vol. 44, No. 8, pp. 760-769 (1997).
    30. J. Chen, K. D. Wise, "A high-resolution silicon monolithic nozzle array for inkjet printing", IEEE Transactions on Electron Devices, Vol. 44, No. 9, pp. 1401-1409 (1997).
    31. H. R. Robbins and B. Schwartz, "Chemical etching of silicon-I. The system HF, HNO3, H2O, and HC2C3O2, " J. Electrochem, Soc., Vol. 106, No. 6, pp. 505-508 (1959).
    32. H. R. Robbins and B. Schwartz, "Chemical etching of silicon-II. The system HF, HNO3, H2O, and HC2C3O2", J. Electrochem, Soc., Vol. 107, No. 2, pp. 108-111 (1960).
    33. B. Schwartz and H. R. Robbins, "Chemical etching of silicon-III. A temperature study in the acid system", J. Electrochem. Soc., Vol. 108, No. 4, pp. 365-372 (1961).
    34. Gregory T. A. Kovacs, Nadim I. Maluf, Kurt E. Petersen, "Bulk Micromachining of Silicon", Proceedings of the IEEE, Vol. 86, No. 8, August, pp.1536-1551 (1998).
    35. M. Elwenspoek, "The form of etch rate minima in wet chemical anisotropic etching of silicon", Journal of Micromechanical and Microengineering, Vol. 6, pp. 405-409 (1996).
    36. B. Schwartz and H. R. Robbins, "Chemical etching of silicon-IV. Etching technology", J. Electrochem. Soc., Vol. 123, No.12, pp. 1903-1909 (1976).
    37. A. F. Bogenschutz, W. Krusemark, K.H. Locherer, and W. Mussinger, "Activation energies in the chemical etching if semiconductors in HNO3-HF-CH3COOH", J. Electrochem. Soc. Solid State, Vol. 114, No. 9, pp. 970-973, Sept. (1997).
    38. D. L. Kendall, "On etching very narrow grooves in silicon", Applied Physics Letters, Vol. 26, pp. 195-198 (1975).
    39. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, "Anisotropic etching of crystalline silicon in alkaline solution-Part I. Orientation dependence and behavior of passivation layer", J. Electrochem. Soc., Vol. 137, No. 11, pp. 3612-3626 (1990).
    40. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, "Anisotropic etching of crystalline silicon in alkaline solution-Part II. Influence of dopants", J. Electrochem. Soc., Vol. 137, No. 11, pp. 3626-3632 (1990).
    41. C. Scheibe, E. Obermeier, "Compensating corner undercutting in anisotropic etching of (100) Silicon for chip separation", J. Micromech. Microeng. No 5, pp. 109-111 (1995).
    42. http://www.kaz.mech.nagoya-u.ac.jp/
    43. K. Sato, M. Shikida, Y. Matsushima, T. Yamashiro, K. Asaumi, Y. Iriye, and M. Yamamoto, "Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration", Sensors and Actuators A 64, pp. 87-93 (1998).
    44. K. Sato, M. Shikida, T. Yamashiro, M. Tsunekawa, and S. Ito, "Roughness of single-crystal silicon surface etched by KOH water solution", Sensors and Actuators A 73, pp. 122-130 (1999).
    45. K. Sato, M. Shikida, T. Yamashiro, K. Asaumi, Y. Iriye, and M. Yamamoto, "Anisotropic etching rates of single-crystal silicon for TMAH water solution as a function of crystallographic orientation", Sensors and Actuators A 73, pp. 131-137 (1999).
    46. M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, "Differences in anisotropic properties of KOH and TMAH solutions", Sensors and Actuators A 80, pp. 179-188 (2000).
    47. O. Tabata, "Anisotropy and selectivity control of TMAH", Journal of Micro Electro Mechanical Systems, MEMS 98’ Proceedings, pp. 229-233 (1999).
    48. O. Tabata, R. Asahi, H. Funabashi, S. Sugiyama, "Anisotropic etching of silicon in TMAH solutions", Sensors and Actuators A 34, pp. 51-57 (1992).
    49. Y. Backlund and L. Rosengren, "New shapes in (100) si using KOH and EDP etches", Journal of Micromech. Microeng. , Vol. 2, pp. 75-79 (1992).
    50. K. Tokoro, D. Uchikawa, M. Shikida and K. Sato, "Anisotropic etching properties of silicon in KOH and TMAH solutions", Micromechatronics and Human Science (MHS '98.) , pp. 65-70 (1998).
    51. M. Shikida, K. Sato, K. Tokoro and D. Uchikawa, "Comparison of anisotropic etching properties between KOH and TMAH solutions", MEMS '99. Twelfth IEEE International Conference, pp. 315-320 (1999).
    52. M. M. Noor, B. Bais and B. Y. Majlis, "The effects of temperature and KOH concentration on silicon etching rate and membrane surface roughness", International Conference on Semiconductor Electronics, pp. 524-528 (2002).
    53. E. D. Palik, O. J. Glembocki, I. Heard, P. S. Burno, L. Tenerz, "Etching roughness for (100) silicon surfaces in aqueous KOH", Journal of Apply Physics, Vol. 70 (6), pp. 3291-3300 (1991).
    54. J. Chen, L. Liu, Z. Tan, Q. Jiang, H. Fang, Y. Xu, Y. Liu, "Study of anisotropic etching of (100) Si with ultrasonic agitation", Sensors and Actuators A 96, pp. 152-156 (2002).
    55. C. R. Yang, P. Y. Chen, Y. C. Chiou, and R. T. Lee, "Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution ", Sensors and Actuators A (2004).
    56. Jan A. Dziuban, "Microwave enhanced fast anisotropic etching of monocrystalline silicon", Sensors and Actuators A 85, pp. 133-138 (2000).
    57. I. Zubel, M. Kramkowska, "The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions", Sensors and Actuators A 93, pp. 138-147, (2001).
    58. S. A. Campbell, K. Cooper, L. Dixon, R. Earwaker, S N Port, "Inhibition of pyramid formation in the etching of Si P <100> in aqueous potassium hydroxide–isopropanol", Journal of Micromech. Microeng. 5 (1995) 209-218
    59. T. Baum, D. J. Schiffrin, "AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si <100> in KOH for micromachining applications", Journal of Micromech. Microeng. , Vol. 4, pp. 338-342 (1997).
    60. R. Divan, N. Moldovan, H. Camon, "Roughning and smoothing dynamics during KOH silicon etching", Sensors and Actuators A , Vol. 74, pp.18–23 (1999).
    61. A. Merlos, M. C. Acero, M. H. Bao, J. Bausells, J. Esteve, "TMAH/IPA anisotropic etching characteristics", Sensors and Actuator A, Vol. 37-38, pp. 737-743 (1993).
    62. G. S. Chung, "Anisotropic etching characteristics of silicon in TMAH:IPA:pyrazine solutions", Sensors Materials, Vol. 12(3), pp. 133-142 (2000).
    63. K. Lian, B. Stark, A. M. Gundlach, A. J. Walton, Aluminum passivation for TMAH based anisotropic etching for MEMS applications, Elecronics Letters, Vol. 35(15), pp. 1266-1267 (1999).
    64. M. Sekimura, Anisotropic etching of surfactant-added TMAH solution, Proc. 12th Int.Conf. on MEMS’99, pp. 650-655 (1999).
    65. C. R. Yang, P. Y. Chen, C. H. Yang, Y. C. Chiou, and R. T. Lee, "Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions ", Sensor and Actuators A (2004).
    66. H. Tanaka, S. Yamashita, Y. Abe, M. Shikida and K. Sato, "Fast wet anisotropic etching of Si{100} and {110} with a smooth surface in ultra-high temperature KOH solution", The 12th Int. Conf. on Solid State Sensors, Actuators and Microsystems, Transducers’03, pp. 1675-1678 (2003).
    67. E. Slowinski, E. E. Gates, C. E. Waring, "The effect of pressure on the surface tensions of liquids", Journal of Physical chemistry, Vol. 61, pp. 808-813 (1957).
    68. P. M. Sarro, D. Brida, W. Vlist and S. Brida, "Effect of surfactant on surface quality of silicon microstructures etched in saturated TMAHW solutions", Sensors and Actuators A, Vol. 85, pp. 340-5 (2000).
    69. M. Sekimura, "Anisotropic etching of surfactant-added TMAH solution", Proc. 12th Int.Conf. on MEMS’99, pp. 650-5 (1999).
    70. S. Kalveram and A. Neyer, "Precision molding techniques for optical wavequide devices", SPIE 3135, 2-11, (1997).
    71. Donald A. Neamen, Semiconductor Physics and Devices, McGraw-Hill Higher Education, (2003).
    72. L. Walter, “Silicon microstructuring technology”, Materials science and engineering, R17, pp. 1-55 (1996).
    73. D. B. Lee, “Anisotropic etching of silicon “, Journal of Applied physics, Vol. 40, No. 11, pp. 4569-4574 (1969).
    74. P. J. Hesketh, C. Ju, and S. Gowda, “Surface free energy model of silicon anisotropic etching”, Journal of Electrochem. Soc., Vol.140, No.4, pp. 1080-1084 (1993).
    75. D. R. Ciarlo, “Corner compensation structures for (110) oriented silicon”, IEEE Micro Robots and Teleoperators Workshop, pp. 6/1-4 (1987).
    76. W. Fang and J. A. Wickert, “Comments on measuring thin-film stresses using bi-layer micromachined beams”, Journal of Micromechanical and Microengineering, Vol. 5, pp. 276-281 (1996).
    77. J. Klein, H. Guckel, D. P. Siddons, E. D. Johnson, “X-Ray masks for very deep X-Ray lithography”, Microsystem Technologies 4, pp. 70-73 (1998).
    78. E. D. Palik, V. M. Bermudez, and O. J. Glembocki, “Ellipsometric study of the etch-stop mechanism in heavily doped silicon”, Journal of Electrochem. Soc., pp. 135-141 (1985).
    79. T. N. Jackson, M. A. Tischler, and K. D. Wise, “An electrochemical P-N junction etch-stop for the formation of silicon microstructures”, IEEE Electron. Dev. Lett., Vol. EDL-2, No.2, pp. 44-45 (1981).
    80. P. M. Sarro, A. W. van Herwaarden, “Silicon cantilever beams fabricated by electrochemically controlled etching for sensor applications”, Journal of Electrochem. Soc., Vol. 133, No. 8, pp. 1724-1729 (1986).
    81. M. Hirata, S. Suwazono, and H. Tanigawa, “Diaphragm Thickness control in silicon pressure sensors using an anodic oxidation etch-stop”, Journal of Electrochem. Soc., Vol. 134, No. 8, pp. 2037-2041 (1987).
    82. 莊達人, VLSI製造技術, 高立圖書有限公司.
    83. S. S. Tan, M. L. Reed, H. Han, R. Boudreau, “Mechanisms of etch hillock formation”, Journal of Micro Electro Mechanical Systems, Vol. 5, No. 1, pp. 66-72 (1996).
    84. Y. K. Bhatnagar and A. Nathan, “ On pyramidal protrusions in anisotropic etching of <100> silicon”, Sensors and Actuators A, Vol. A36, pp. 233-240 (1993).
    85. W. K. Choi, J. T. L. Luo, P. Tan, C. M. Chua, T. H. and Y. Bai, “Characterisation of pyramid formation arising from the TMAH etching of silicon”, Sensors and Actuators A, Vol. 71, pp. 238-243 (1998).
    86. L. M. Landsberger, S. Naseh, M. Kahrizi and M. Paranjape, “On hillocks generated during anisotropic etching of Si in TMAH”, Journal of Microelectromechanical System, Vol. 5, No. 2, pp. 106-116 (1996).
    87. O. Tabata, “pH-controlled TMAH etchants for silicon micromaching”, Transducers ’95, pp. 83-86 (1995).
    88. M. Madou, Fundamentals of microfabrication, CRC Press, New York, pp. 145-186 (1997).
    89. O. K. Rice, "The effect of pressure on surface tension", Journal of Chemical physics, Vol. 15, pp. 333-335 (1947).
    90. S. Wolfgang, "Arrhenius equation and non-equilibrium kinetics: chemial kinetics effect of temperature on mathematical models", Leipzig: BSB B.G. Teubner, (1989).
    91. C. R. Yang, P. Y. Cheng, M. H. Lin, Y. C. Chiou, R. T. Lee, "Effects of Various Ion-Typed Surfactants on Silicon Anisotropic Etching Properties in KOH and TMAH Solutions", proceedings of the 21st National Conference on Mechanical Engineering (CSME 2004), E0101112 (2004).
    92. J. Merta, P. Stenius, "Interactions between cationic starch and mixed anionic surfactants", Journal of Colloids and Surfaces A: Physicochemical and Engineering, Vol 149, pp. 367-377 (1999).
    93. 趙承琛, "界面科學基礎", 復文書局, pp. 185-186 (2002).
    94. U. Schnakenberg, W. Benecke, B. Lochel, "NH4OH-based etchants for silicon micromachining", Sensors and Actuators A, A21-23, pp. 1031-1035.
    95. T. Matsumoto, H. Fujii, T. Ueda, M. Kamai, K. Nogi, "Measurement of surface tension of molten copper using the free-fall oscillating drop method", Measurement Science and Technology, Vol. 16, pp. 432-437 (2005).
    96. Nicolas von Solms, Nicoletta Zecchin, A. rubin, Simon I. Andersen, Erling H. Stenby, "Direct measurement of gas solubility and diffusivity in poly(vinylidene fluoride) with a high-pressure microbalance", Journal of European Polymer, Vol. 41, pp. 341-348 (2005).
    97. J. Lee, W. Shimoda, T. Tanaka, "Temperature dependence of surface tension of liquid Sn-Ag, In-Ag and In Cu alloys", Measurement Science and Technology, Vol.16, pp. 438-442 (2005).

    QR CODE