一、非線性光學材料KTiOPO4:Al,經γ-ray照射產生點缺陷的研究
摻入鋁的KTiOPO4晶體,於室溫下經γ-ray照射後,會產生點缺陷,該點缺陷屬電洞型的順磁中心,此中心經分析確認位於鄰Ti氧原子處,附近伴隨有Al3+離子,該離子有穩定此順磁中心的作用。
二、摻入V4+雜質的KTiOPO4晶體之雜質中心的研究
摻入的V4+離子佔據兩種不同環境Ti4+的位置,並且分別與最近的鄰Ti氧形成共價鍵,而形成兩種不同的VO2+,這兩種離子的共振訊號即使在室溫時線寬仍甚窄易於鑑別,與磷原子核間的超精細作用亦清晰可見,使得VO2+極適合作為控制KTiOPO4晶體品質的EPR檢測工具。
三、人工合成的FeS2晶體缺硫摻氯後的研究
以化學蒸氣傳輸法,並以ICl3為傳導劑長成的FeS2晶體,常會有缺硫並滲入氯的問題。經過再結晶後缺硫較多的FeS2晶體中,我們除了測得先前已探測過的軸對稱(SCl)2-訊號,又測得新的非軸對稱的(SCl)2-訊號,其附近並伴隨有一Fe2+空缺,可能是因為須補償Cr3+雜質的過多正電荷而產生。
參考資料
1. C. P. Poole Jr., and H.A. Farac, “Theory of Magnetic Resonance”, 2nd ed., John Wiley and Sons, New York (1987)
2. R. S. Alger, “Electron paramagnetic Resonance: Techniques and Applications”, Interscience Publishers, New York (1968).
3. N. M. Atherton, “Elcetron Spin Resonance”, John Wiley & Sons, New York (1973).
4. G. E. Pake and T. L. Estle, “The Physical Principles of Electron Paramagnetic Resonance”, W. A. Benjamin, Massachusetts (1973).
5. J. T. Yu, J. Phys. C: Solid State Phys. 21, 2103 (1988)
6. 吳慶軍,博士論文,國立清華大學物理研究所(1991)
7. Massey G. A., Loehr T. M., Willis L. J. and Johnson J. C., Appl. Opt. 19, 4136 (1980).
8. Zumsteg F. C., Bierlein J. D. and Gier T. E., J. appl. Phys. 47, 4980 (1976).
9. Liu Y. S., Dentz D. and Belt R., Opt. Let. 9, 76 (1984).
10. Bierlein J. D. and Vanherzeele H., J. Opt. Soc. Am. B6, 622 (1989).
11. Roelofs M. G., J. appl. Phys. 65, 4976 (1989).
12. Scripsick M. P., Edwards G. J., Halliburton L. E. and Belt R. F., J. appl. Phys. 70, 2991 (1991).
13. Andree B. V. and Dfimov V. N., Modern Phys. Lett. B6, 177 (1992).
14. Kirklin P. W., Auzins P. and Wertz J. E., J. Phys. Chem. Solids 26, 1067 (1965).
15. Wertz J. E. and Auzin P., Phys. Rev. A139, 1645 (1965).
16. Schoenberg A., Suss J. T., Szapiro S. and Luz Z., Phys. Rev. Lett. 27, 1641 (1971).
17. Halliburton L. E., Cowan D. L., Blake W. B. and Wertz J. E., Phys. Rev. B8 1610 (1973).
18. Abraham M. M., Chen Y. and Unruh W. P., Phys. Rev. B9, 1842 (1974)
19. Huang Yutung, Ph. D. Thesis, University of Illinois at Urbana-Champaign (1993).
20. Morton J. R. and Preston K. F., Magnetic Properties of Free Radicals, Part a (Edited by H. Fischer and K. H. Hellwege). Springer, New York (1977).
21. Hughes W. E. and Moulton W. G., J. Chem. Phys. 39, 1359 (1963)
22. Alybakov A. A., Arbotoev O. M., Gubanova V. A. and Turdaliev I. K., Phys. Status Solidi (b) 120, K83 (1990).
23. Subramanian S., Symons m. C. R. and Wardale H. W., J. chem.. Soc. (A), 1239 (1970).
24. Symons M. C. R., J. Chem. Phys. 53, 857 (1970).
25. Kawazoe H., Hosono H., Nishii J. and Kanazawa T., J. chem.. Phys. 76, 3429 (1982).
26. Hanna M. W. and Altman L. j., J. Chem. Phys. 36, 1788 (1962).
27. Horsfield A., Morton J. R. and Whiffen D. H., Molec. Phys. 4, 475 (1961).
28. Symons M. C. R., J. Chem. Soc. (A), 998 (1970).
29. Morton J. R., Molec. Phys. 5, 217 (1962).
30. Subramanian S., Murty P. N. and Murty C. R. K., J. Phys. Chem. Solids 38, 825 (1977).
31. Yu J. T. and Lou S. H., J. Phys. Soc. Japan 62, 3294 (1993).
32. Stapelbroek M., Bartram R. H., Gilliam O. R. and Madacsi D. P., Phys. Rev. B13, 1960 (1976).
33. Cox R. T., Solid St. Commun. 9, 1989 (1971).
34. Maffeo B. and Hrve A., Phys. Rev. B13, 1940 (1976).
35. Possenriede E., Jacobs P. and Shirmer O. F., J. Phys.: Condens. Matter 4, 4719 (1992).
36. Theis W. M., Norris G. B. and Porter M. D., Appl. Phys. Lett. 46, 1033 (1985).
37. Ahmed F., Belt R. F. and Gashurov G., J. Appl. Phys. 60, 839 (1986).
38. Wigen P. E. and Cowan J. A., J. Phys. Chem. Solids 17, 26 (1960).
39. Gunter T. E., J. Chem. Phys. 46, 3818 (1967).
40. Henderson B. and Garrison A. K., Adv. Phys. 22, 423 (1973).
41. Halliburton L. H., Kappers L. A., Cowan D. L., Dravnieks F. and Wertz J. E., Phys. Rev. Lett. 30, 607 (1973).
42. Wertz J. E. Saville G. S., Auzins P. and Orton J. W., J. Phys. Soc. Japan 18, Suppl. II, 305 (1963).
43. Wertz J. E., Auzins P., Griffiths J. H. E. and Orton J. W., Discuss. Faraday Soc. 28, 136 (1959).
44. Chen Y. and Sibley W. A., Phys. Rev. 154, 842 (1967).
45. Unruh W. P., Chen Y. and Abraham M. M., Phys, Rev. Lett. 30, 446 (1973).
46. Garrison A. K. and DuVarney R. C., Solid St. Commun. 12, 1235 (1973).
47. Abraham M. M., Chen Y., Boatner L. A. and Reynolds R. W., Solid St. Commun. 16, 1209 (1975).
48. Hall T. P. P., J. Phys. C8, 1921 (1975).
49. Geifman I. N., Nagornyi P. G., Usov A. N. and Ngy P. Za, Sov. Phys. Solid State 33, 535 (1991).
50. Han S., Wang J., Xu Y., Liu Y. and Wei J., J. Phys.: Condens. Matter 4, 6009 (1992).
51. Tordjman I., Masse R. and Guitel J. C., Z. Kristallogr. 139, 103 (1974).
52. Minge J. and Waplak S., Phys. Stat. Solidi (b) 123, 27 (1984).
53. Wu C. J., Yu J. T., Tsai m. N. and Lou S. H., J. Phys.: Condens. Matter 3, 3795 (1991).
54. Philips M. L. F., Harrison W. T. A., Gier T. E., Stucky G. D., Kulkarni G. V. and Burdett J. K., Inorg. Chem. 29, 2158 (1990).
55. Geifman I. N., Usov A. N. and Nagornyi P. G., Phys. Stat. Solids (b) 172, K73 (1992).
56. A. Ennaoui, S. Fiechter, W. Jaegerman and H. Tributsch: J. Electrochem. Soc. 133 (1986) 97.
57. M. Y. Tsay, Y. S. Huang and Y. F. Chen: J. Appl. Phys. 74 (1993) 2786.
58. J. T. Yu, C. J. Wu, Y. S. Huang and S. S. Lin: J. Appl. Phys. 71 (1992) 370.
59. R. N. Chandler and R. W. Bene: Phys. Rev. B8 (1973) 4979.
60. D. Siebert, R. Miller, S. Fiechter, P. Dulski and A. Hartman: Z. Naturforsch a 45 (1990) 1267.
61. D. Siebert, J. Dahlem, S. Fiechter and A. Hartman: Z. Naturforsch a 44 (1989) 59.
62. D. Siebert, J. Dahlem, S. Fiechter and R. Miller: Phys. Status Solidi b 171 (1992) K93.
63. J. Schneider, A. Räuber, B. Dischler, T. L. Estle and W. C. Holton: J. Chem. Phys. 42 (1965) 1839.
64. G. E. Pake and T. L. Estle: The Physical Principles of Electron Paramagnetic Resonance (W. A. Benjamin, Reading, 1973) 2nd ed., p. 247.
65. J. Schneider, B. Dischler and A. Räuber: J. Phys. Chem. Solids 31 (1970) 337.
66. R. S. Title, G. Mandel and F. F. Morehead: Phys. Rev. 136 (1964) A300.
67. Y. Otomo, H. Kusumoto and P. H. Kasai: Phys. Lett. 4 (1963) 228.
68. R. W. G. Wyckoff: Crystal Structures (Interscience, New York, 1965) Vol. 1.